IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v68y2014icp454-469.html
   My bibliography  Save this article

Thermodynamic analysis of an upstream petroleum plant operated on a mature field

Author

Listed:
  • Nguyen, Tuong-Van
  • Jacyno, Tomasz
  • Breuhaus, Peter
  • Voldsund, Mari
  • Elmegaard, Brian

Abstract

Oil and gas processing on offshore platforms operates under changing boundary conditions over a field lifespan, as the hydrocarbon production declines and the water extraction increases. In this paper, the processing plant of the Draugen platform is evaluated by performing an energy and exergy analysis. This facility exploits an end-life oilfield and runs at conditions deviating significantly from its optimal operating specifications. Two different operating modes were assessed, and process models were developed using the simulation tools Aspen Plus® and Aspen HYSYS®, based on measured and reconciliated process data. The total energy demand is moderately sensitive to daily and monthly variations: it ranges between 22 and 30 MW, of which 18–26 MW and about 3–4 MW are in electrical and thermal energy forms. The greatest exergy destruction takes place in the gas treatment (51%), recompression (12%) and production manifold (10%) modules. The separation work performed on this platform is greater than in similar facilities because of higher propane and water fractions of the well-streams. These findings emphasise the differences between peak and end-life productions: they suggest (i) to set focus on processes including gas expansion and compression, (ii) to investigate possibilities for an improved energy integration, and (iii) to consider and evaluate alternative system designs.

Suggested Citation

  • Nguyen, Tuong-Van & Jacyno, Tomasz & Breuhaus, Peter & Voldsund, Mari & Elmegaard, Brian, 2014. "Thermodynamic analysis of an upstream petroleum plant operated on a mature field," Energy, Elsevier, vol. 68(C), pages 454-469.
  • Handle: RePEc:eee:energy:v:68:y:2014:i:c:p:454-469
    DOI: 10.1016/j.energy.2014.02.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214001741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.02.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    2. Wall, Göran, 1988. "Exergy flows in industrial processes," Energy, Elsevier, vol. 13(2), pages 197-208.
    3. Tsatsaronis, Georgios & Winhold, Michael, 1985. "Exergoeconomic analysis and evaluation of energy-conversion plants—I. A new general methodology," Energy, Elsevier, vol. 10(1), pages 69-80.
    4. Meyer, Lutz & Tsatsaronis, George & Buchgeister, Jens & Schebek, Liselotte, 2009. "Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems," Energy, Elsevier, vol. 34(1), pages 75-89.
    5. Szargut, Jan, 1989. "Chemical exergies of the elements," Applied Energy, Elsevier, vol. 32(4), pages 269-286.
    6. Morris, David R. & Szargut, Jan, 1986. "Standard chemical exergy of some elements and compounds on the planet earth," Energy, Elsevier, vol. 11(8), pages 733-755.
    7. Sciubba, Enrico, 2003. "Extended exergy accounting applied to energy recovery from waste: The concept of total recycling," Energy, Elsevier, vol. 28(13), pages 1315-1334.
    8. Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Carassai, Anna, 2012. "Conventional and advanced exergetic analyses applied to a combined cycle power plant," Energy, Elsevier, vol. 41(1), pages 146-152.
    9. Kelly, S. & Tsatsaronis, G. & Morosuk, T., 2009. "Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts," Energy, Elsevier, vol. 34(3), pages 384-391.
    10. Achim Schmitt & G. Devins, 2011. "Produktion," Post-Print hal-00798531, HAL.
    11. Voldsund, Mari & Ertesvåg, Ivar Ståle & He, Wei & Kjelstrup, Signe, 2013. "Exergy analysis of the oil and gas processing on a North Sea oil platform a real production day," Energy, Elsevier, vol. 55(C), pages 716-727.
    12. Nguyen, Tuong-Van & Pierobon, Leonardo & Elmegaard, Brian & Haglind, Fredrik & Breuhaus, Peter & Voldsund, Mari, 2013. "Exergetic assessment of energy systems on North Sea oil and gas platforms," Energy, Elsevier, vol. 62(C), pages 23-36.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Voldsund, Mari & Nguyen, Tuong-Van & Elmegaard, Brian & Ertesvåg, Ivar S. & Røsjorde, Audun & Jøssang, Knut & Kjelstrup, Signe, 2014. "Exergy destruction and losses on four North Sea offshore platforms: A comparative study of the oil and gas processing plants," Energy, Elsevier, vol. 74(C), pages 45-58.
    2. da Silva, Julio A.M. & de Oliveira Junior, S., 2018. "Unit exergy cost and CO2 emissions of offshore petroleum production," Energy, Elsevier, vol. 147(C), pages 757-766.
    3. Nguyen, Tuong-Van & Voldsund, Mari & Elmegaard, Brian & Ertesvåg, Ivar Ståle & Kjelstrup, Signe, 2014. "On the definition of exergy efficiencies for petroleum systems: Application to offshore oil and gas processing," Energy, Elsevier, vol. 73(C), pages 264-281.
    4. Aditya Prana Iswara & Aulia Ulfah Farahdiba & Rachmat Boedisantoso & Anwar Rosyid & Sunu Priambodo & Lin-Han Chiang Hsieh, 2023. "Carbon footprint of offshore platform in Indonesia using life cycle approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11263-11284, October.
    5. Nguyen, Tuong-Van & Tock, Laurence & Breuhaus, Peter & Maréchal, François & Elmegaard, Brian, 2014. "Oil and gas platforms with steam bottoming cycles: System integration and thermoenvironomic evaluation," Applied Energy, Elsevier, vol. 131(C), pages 222-237.
    6. Nguyen, Tuong-Van & de Oliveira Júnior, Silvio, 2018. "Life performance of oil and gas platforms for various production profiles and feed compositions," Energy, Elsevier, vol. 161(C), pages 583-594.
    7. Nami, Hossein & Ertesvåg, Ivar S. & Agromayor, Roberto & Riboldi, Luca & Nord, Lars O., 2018. "Gas turbine exhaust gas heat recovery by organic Rankine cycles (ORC) for offshore combined heat and power applications - Energy and exergy analysis," Energy, Elsevier, vol. 165(PB), pages 1060-1071.
    8. Nguyen, Tuong-Van & de Oliveira Júnior, Silvio, 2018. "System evaluation of offshore platforms with gas liquefaction processes," Energy, Elsevier, vol. 144(C), pages 594-606.
    9. Nguyen, Tuong-Van & Tock, Laurence & Breuhaus, Peter & Maréchal, François & Elmegaard, Brian, 2016. "CO2-mitigation options for the offshore oil and gas sector," Applied Energy, Elsevier, vol. 161(C), pages 673-694.
    10. Nguyen, Tuong-Van & Voldsund, Mari & Breuhaus, Peter & Elmegaard, Brian, 2016. "Energy efficiency measures for offshore oil and gas platforms," Energy, Elsevier, vol. 117(P2), pages 325-340.
    11. Luca Riboldi & Marcin Pilarczyk & Lars O. Nord, 2021. "The Impact of Process Heat on the Decarbonisation Potential of Offshore Installations by Hybrid Energy Systems," Energies, MDPI, vol. 14(23), pages 1-15, December.
    12. Carranza Sánchez, Yamid Alberto & de Oliveira, Silvio, 2015. "Exergy analysis of offshore primary petroleum processing plant with CO2 capture," Energy, Elsevier, vol. 88(C), pages 46-56.
    13. Chen, Zhengjie & Ma, Wenhui & Wu, Jijun & Wei, Kuixian & Yang, Xi & Lv, Guoqiang & Xie, Keqiang & Yu, Jie, 2016. "Influence of carbothermic reduction on submerged arc furnace energy efficiency during silicon production," Energy, Elsevier, vol. 116(P1), pages 687-693.
    14. Zhang, Hongyu & Tomasgard, Asgeir & Knudsen, Brage Rugstad & Svendsen, Harald G. & Bakker, Steffen J. & Grossmann, Ignacio E., 2022. "Modelling and analysis of offshore energy hubs," Energy, Elsevier, vol. 261(PA).
    15. Luca Riboldi & Lars O. Nord, 2017. "Lifetime Assessment of Combined Cycles for Cogeneration of Power and Heat in Offshore Oil and Gas Installations," Energies, MDPI, vol. 10(6), pages 1-23, May.
    16. Nguyen, Tuong-Van & Barbosa, Yuri M. & da Silva, Julio A.M. & de Oliveira Junior, Silvio, 2019. "A novel methodology for the design and optimisation of oil and gas offshore platforms," Energy, Elsevier, vol. 185(C), pages 158-175.
    17. Nguyen, Tuong-Van & Fülöp, Tamás Gábor & Breuhaus, Peter & Elmegaard, Brian, 2014. "Life performance of oil and gas platforms: Site integration and thermodynamic evaluation," Energy, Elsevier, vol. 73(C), pages 282-301.
    18. Barbosa, Yuri M. & da Silva, Julio A.M. & Junior, Silvio de O. & Torres, Ednildo A., 2019. "Deep seawater as efficiency improver for cogeneration plants of petroleum production units," Energy, Elsevier, vol. 177(C), pages 29-43.
    19. Barrera, Julian Esteban & Bazzo, Edson & Kami, Eduardo, 2015. "Exergy analysis and energy improvement of a Brazilian floating oil platform using Organic Rankine Cycles," Energy, Elsevier, vol. 88(C), pages 67-79.
    20. Børset, M.T. & Kolbeinsen, L. & Tveit, H. & Kjelstrup, S., 2015. "Exergy based efficiency indicators for the silicon furnace," Energy, Elsevier, vol. 90(P2), pages 1916-1921.
    21. Li, Zhuochao & Zhang, Haoran & Meng, Jing & Long, Yin & Yan, Yamin & Li, Meixuan & Huang, Zhongliang & Liang, Yongtu, 2020. "Reducing carbon footprint of deep-sea oil and gas field exploitation by optimization for Floating Production Storage and Offloading," Applied Energy, Elsevier, vol. 261(C).
    22. Flórez-Orrego, Daniel & Henriques, Izabela B. & Nguyen, Tuong-Van & Mendes da Silva, Julio A. & Keutenedjian Mady, Carlos E. & Pellegrini, Luiz Felipe & Gandolfi, Ricardo & Velasquez, Hector I. & Burb, 2018. "The contributions of Prof. Jan Szargut to the exergy and environmental assessment of complex energy systems," Energy, Elsevier, vol. 161(C), pages 482-492.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Tuong-Van & Pierobon, Leonardo & Elmegaard, Brian & Haglind, Fredrik & Breuhaus, Peter & Voldsund, Mari, 2013. "Exergetic assessment of energy systems on North Sea oil and gas platforms," Energy, Elsevier, vol. 62(C), pages 23-36.
    2. Nguyen, Tuong-Van & Voldsund, Mari & Elmegaard, Brian & Ertesvåg, Ivar Ståle & Kjelstrup, Signe, 2014. "On the definition of exergy efficiencies for petroleum systems: Application to offshore oil and gas processing," Energy, Elsevier, vol. 73(C), pages 264-281.
    3. Nguyen, Tuong-Van & Fülöp, Tamás Gábor & Breuhaus, Peter & Elmegaard, Brian, 2014. "Life performance of oil and gas platforms: Site integration and thermodynamic evaluation," Energy, Elsevier, vol. 73(C), pages 282-301.
    4. Adrian Bejan & George Tsatsaronis, 2021. "Purpose in Thermodynamics," Energies, MDPI, vol. 14(2), pages 1-25, January.
    5. Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
    6. Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Paitazoglou, Christopher, 2012. "Environmental evaluation of a power plant using conventional and advanced exergy-based methods," Energy, Elsevier, vol. 45(1), pages 23-30.
    7. Tsatsaronis, George & Morosuk, Tatiana & Koch, Daniela & Sorgenfrei, Max, 2013. "Understanding the thermodynamic inefficiencies in combustion processes," Energy, Elsevier, vol. 62(C), pages 3-11.
    8. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
    9. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    10. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    11. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    12. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    13. Silva, J.A.M. & Flórez-Orrego, D. & Oliveira, S., 2014. "An exergy based approach to determine production cost and CO2 allocation for petroleum derived fuels," Energy, Elsevier, vol. 67(C), pages 490-495.
    14. Mergenthaler, Pieter & Schinkel, Arndt-Peter & Tsatsaronis, George, 2017. "Application of exergoeconomic, exergoenvironmental, and advanced exergy analyses to Carbon Black production," Energy, Elsevier, vol. 137(C), pages 898-907.
    15. Valero, Antonio & Usón, Sergio & Torres, César & Valero, Alicia & Agudelo, Andrés & Costa, Jorge, 2013. "Thermoeconomic tools for the analysis of eco-industrial parks," Energy, Elsevier, vol. 62(C), pages 62-72.
    16. Charalampos Michalakakis & Jonathan M. Cullen, 2022. "Dynamic exergy analysis: From industrial data to exergy flows," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 12-26, February.
    17. Burak Yuksel & Huseyin Gunerhan & Arif Hepbasli, 2020. "Assessing Exergy-Based Economic and Sustainability Analyses of a Military Gas Turbine Engine Fueled with Various Fuels," Energies, MDPI, vol. 13(15), pages 1-28, July.
    18. Onur Vahip Güler & Emine Yağız Gürbüz & Aleksandar G. Georgiev & Ali Keçebaş, 2023. "Advanced Exergoeconomic Assessment of CO 2 Emissions, Geo-Fluid and Electricity in Dual Loop Geothermal Power Plant," Energies, MDPI, vol. 16(8), pages 1-24, April.
    19. Blanco-Marigorta, Ana M. & Masi, Marco & Manfrida, Giampaolo, 2014. "Exergo-environmental analysis of a reverse osmosis desalination plant in Gran Canaria," Energy, Elsevier, vol. 76(C), pages 223-232.
    20. César Torres & Antonio Valero, 2021. "The Exergy Cost Theory Revisited," Energies, MDPI, vol. 14(6), pages 1-42, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:68:y:2014:i:c:p:454-469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.