IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v144y2018icp594-606.html
   My bibliography  Save this article

System evaluation of offshore platforms with gas liquefaction processes

Author

Listed:
  • Nguyen, Tuong-Van
  • de Oliveira Júnior, Silvio

Abstract

Floating, production, storage and offloading plants are facilities used for offshore processing of hydrocarbons in remote locations. At present, the produced gas is injected back into the reservoir instead of being exported. The implementation of refrigeration processes offshore for liquefying natural gas provides the opportunity to monetize offshore gas resources. The present work analyzes the performance of offshore platforms, from the oil processing to the gas liquefaction system. Different feed compositions, system layouts and liquefaction processes are considered. Potential system improvements are discussed based on an energy and exergy analysis. Compared to a standard platform where gas is directly injected into the reservoir, the total power consumption increases by up to 50%, and the exergy destruction within the processing plant doubles when a liquefaction system is installed. It is therefore essential to conduct a careful analysis of the trade-off between the capital costs and operating revenues for such options.

Suggested Citation

  • Nguyen, Tuong-Van & de Oliveira Júnior, Silvio, 2018. "System evaluation of offshore platforms with gas liquefaction processes," Energy, Elsevier, vol. 144(C), pages 594-606.
  • Handle: RePEc:eee:energy:v:144:y:2018:i:c:p:594-606
    DOI: 10.1016/j.energy.2017.12.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217320765
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Voldsund, Mari & Nguyen, Tuong-Van & Elmegaard, Brian & Ertesvåg, Ivar S. & Røsjorde, Audun & Jøssang, Knut & Kjelstrup, Signe, 2014. "Exergy destruction and losses on four North Sea offshore platforms: A comparative study of the oil and gas processing plants," Energy, Elsevier, vol. 74(C), pages 45-58.
    2. Szargut, Jan, 1989. "Chemical exergies of the elements," Applied Energy, Elsevier, vol. 32(4), pages 269-286.
    3. Remeljej, C.W. & Hoadley, A.F.A., 2006. "An exergy analysis of small-scale liquefied natural gas (LNG) liquefaction processes," Energy, Elsevier, vol. 31(12), pages 2005-2019.
    4. Nguyen, Tuong-Van & Tock, Laurence & Breuhaus, Peter & Maréchal, François & Elmegaard, Brian, 2014. "Oil and gas platforms with steam bottoming cycles: System integration and thermoenvironomic evaluation," Applied Energy, Elsevier, vol. 131(C), pages 222-237.
    5. Nguyen, Tuong-Van & Jacyno, Tomasz & Breuhaus, Peter & Voldsund, Mari & Elmegaard, Brian, 2014. "Thermodynamic analysis of an upstream petroleum plant operated on a mature field," Energy, Elsevier, vol. 68(C), pages 454-469.
    6. Nguyen, Tuong-Van & Pierobon, Leonardo & Elmegaard, Brian & Haglind, Fredrik & Breuhaus, Peter & Voldsund, Mari, 2013. "Exergetic assessment of energy systems on North Sea oil and gas platforms," Energy, Elsevier, vol. 62(C), pages 23-36.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Dan & Cao, Xuewen & Ding, Gaoya & Zhang, Pan & Liu, Yang & Bian, Jiang, 2022. "Crystallization and nucleation mechanism of heavy hydrocarbons in natural gas," Energy, Elsevier, vol. 239(PB).
    2. Nguyen, Tuong-Van & de Oliveira Júnior, Silvio, 2018. "Life performance of oil and gas platforms for various production profiles and feed compositions," Energy, Elsevier, vol. 161(C), pages 583-594.
    3. Anan Zhang & Hong Zhang & Meysam Qadrdan & Wei Yang & Xiaolong Jin & Jianzhong Wu, 2019. "Optimal Planning of Integrated Energy Systems for Offshore Oil Extraction and Processing Platforms," Energies, MDPI, vol. 12(4), pages 1-28, February.
    4. da Silva, Vinícius Oliveira & Relva, Stefania Gomes & Mondragon, Marcella & Mendes, André Bergsten & Nishimoto, Kazuo & Peyerl, Drielli, 2023. "Building Options for the Brazilian Pre-salt: A technical-economic and infrastructure analysis of offshore integration between energy generation and natural gas exploration," Resources Policy, Elsevier, vol. 81(C).
    5. Son, Hyunsoo & Kim, Jin-Kuk, 2020. "Energy-efficient process design and optimization of dual-expansion systems for BOG (Boil-off gas) Re-liquefaction process in LNG-fueled ship," Energy, Elsevier, vol. 203(C).
    6. Guo, Dan & Cao, Xuewen & Zhang, Pan & Ding, Gaoya & Liu, Yang & Cao, Hengguang & Bian, Jiang, 2022. "Heterogeneous condensation mechanism of methane-hexane binary mixture," Energy, Elsevier, vol. 256(C).
    7. Flórez-Orrego, Daniel & Henriques, Izabela B. & Nguyen, Tuong-Van & Mendes da Silva, Julio A. & Keutenedjian Mady, Carlos E. & Pellegrini, Luiz Felipe & Gandolfi, Ricardo & Velasquez, Hector I. & Burb, 2018. "The contributions of Prof. Jan Szargut to the exergy and environmental assessment of complex energy systems," Energy, Elsevier, vol. 161(C), pages 482-492.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Tuong-Van & Fülöp, Tamás Gábor & Breuhaus, Peter & Elmegaard, Brian, 2014. "Life performance of oil and gas platforms: Site integration and thermodynamic evaluation," Energy, Elsevier, vol. 73(C), pages 282-301.
    2. Luca Riboldi & Lars O. Nord, 2017. "Lifetime Assessment of Combined Cycles for Cogeneration of Power and Heat in Offshore Oil and Gas Installations," Energies, MDPI, vol. 10(6), pages 1-23, May.
    3. Barrera, Julian Esteban & Bazzo, Edson & Kami, Eduardo, 2015. "Exergy analysis and energy improvement of a Brazilian floating oil platform using Organic Rankine Cycles," Energy, Elsevier, vol. 88(C), pages 67-79.
    4. Nguyen, Tuong-Van & Voldsund, Mari & Elmegaard, Brian & Ertesvåg, Ivar Ståle & Kjelstrup, Signe, 2014. "On the definition of exergy efficiencies for petroleum systems: Application to offshore oil and gas processing," Energy, Elsevier, vol. 73(C), pages 264-281.
    5. Nguyen, Tuong-Van & de Oliveira Júnior, Silvio, 2018. "Life performance of oil and gas platforms for various production profiles and feed compositions," Energy, Elsevier, vol. 161(C), pages 583-594.
    6. Nami, Hossein & Ertesvåg, Ivar S. & Agromayor, Roberto & Riboldi, Luca & Nord, Lars O., 2018. "Gas turbine exhaust gas heat recovery by organic Rankine cycles (ORC) for offshore combined heat and power applications - Energy and exergy analysis," Energy, Elsevier, vol. 165(PB), pages 1060-1071.
    7. Barbosa, Yuri M. & da Silva, Julio A.M. & Junior, Silvio de O. & Torres, Ednildo A., 2019. "Deep seawater as efficiency improver for cogeneration plants of petroleum production units," Energy, Elsevier, vol. 177(C), pages 29-43.
    8. Nguyen, Tuong-Van & Tock, Laurence & Breuhaus, Peter & Maréchal, François & Elmegaard, Brian, 2016. "CO2-mitigation options for the offshore oil and gas sector," Applied Energy, Elsevier, vol. 161(C), pages 673-694.
    9. Flórez-Orrego, Daniel & Henriques, Izabela B. & Nguyen, Tuong-Van & Mendes da Silva, Julio A. & Keutenedjian Mady, Carlos E. & Pellegrini, Luiz Felipe & Gandolfi, Ricardo & Velasquez, Hector I. & Burb, 2018. "The contributions of Prof. Jan Szargut to the exergy and environmental assessment of complex energy systems," Energy, Elsevier, vol. 161(C), pages 482-492.
    10. Nguyen, Tuong-Van & Voldsund, Mari & Breuhaus, Peter & Elmegaard, Brian, 2016. "Energy efficiency measures for offshore oil and gas platforms," Energy, Elsevier, vol. 117(P2), pages 325-340.
    11. Carranza Sánchez, Yamid Alberto & de Oliveira, Silvio, 2015. "Exergy analysis of offshore primary petroleum processing plant with CO2 capture," Energy, Elsevier, vol. 88(C), pages 46-56.
    12. Allahyarzadeh-Bidgoli, Ali & Salviano, Leandro Oliveira & Dezan, Daniel Jonas & de Oliveira Junior, Silvio & Yanagihara, Jurandir Itizo, 2018. "Energy optimization of an FPSO operating in the Brazilian Pre-salt region," Energy, Elsevier, vol. 164(C), pages 390-399.
    13. Nguyen, Tuong-Van & Tock, Laurence & Breuhaus, Peter & Maréchal, François & Elmegaard, Brian, 2014. "Oil and gas platforms with steam bottoming cycles: System integration and thermoenvironomic evaluation," Applied Energy, Elsevier, vol. 131(C), pages 222-237.
    14. Nguyen, Tuong-Van & Jacyno, Tomasz & Breuhaus, Peter & Voldsund, Mari & Elmegaard, Brian, 2014. "Thermodynamic analysis of an upstream petroleum plant operated on a mature field," Energy, Elsevier, vol. 68(C), pages 454-469.
    15. da Silva, Julio A.M. & de Oliveira Junior, S., 2018. "Unit exergy cost and CO2 emissions of offshore petroleum production," Energy, Elsevier, vol. 147(C), pages 757-766.
    16. Luca Riboldi & Steve Völler & Magnus Korpås & Lars O. Nord, 2019. "An Integrated Assessment of the Environmental and Economic Impact of Offshore Oil Platform Electrification," Energies, MDPI, vol. 12(11), pages 1-21, June.
    17. Barbosa, Yuri M. & da Silva, Julio A.M. & Junior, Silvio de O. & Torres, Ednildo A., 2018. "Performance assessment of primary petroleum production cogeneration plants," Energy, Elsevier, vol. 160(C), pages 233-244.
    18. Voldsund, Mari & Nguyen, Tuong-Van & Elmegaard, Brian & Ertesvåg, Ivar S. & Røsjorde, Audun & Jøssang, Knut & Kjelstrup, Signe, 2014. "Exergy destruction and losses on four North Sea offshore platforms: A comparative study of the oil and gas processing plants," Energy, Elsevier, vol. 74(C), pages 45-58.
    19. Luca Riboldi & Marcin Pilarczyk & Lars O. Nord, 2021. "The Impact of Process Heat on the Decarbonisation Potential of Offshore Installations by Hybrid Energy Systems," Energies, MDPI, vol. 14(23), pages 1-15, December.
    20. Nguyen, Tuong-Van & Barbosa, Yuri M. & da Silva, Julio A.M. & de Oliveira Junior, Silvio, 2019. "A novel methodology for the design and optimisation of oil and gas offshore platforms," Energy, Elsevier, vol. 185(C), pages 158-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:144:y:2018:i:c:p:594-606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.