IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v66y2014icp77-81.html
   My bibliography  Save this article

Analysis of operational characteristics of polymer electrolyte fuel cell with expanded graphite flow-field plates via electrochemical impedance investigation

Author

Listed:
  • Park, Taehyun
  • Chang, Ikwhang
  • Lee, Yoon Ho
  • Ji, Sanghoon
  • Cha, Suk Won

Abstract

Expanded graphite was investigated as a material for flow-field plates in PEFCs (polymer electrolyte fuel cells). Because expanded graphite is flexible but has similar material properties with normal graphite, channels on flow-field plates were designed to have single channel in order to compare operational characteristics including diffusion of reactants through ribs by comparing polarization curves and electrochemical impedance spectra between PEFCs with expanded graphite and graphite flow-field plates. As a result, PEFC with the expanded graphite flow-field plates has comparable open-circuit voltage to that with the graphite flow-field plates. However, PEFC with the expanded graphite plates had higher ohmic resistance than that with the graphite plates due to higher electrical resistance of the expanded graphite than that of the graphite. It was also found from faradaic resistances that the diffusion of the reactants through GDLs (gas diffusion layers) is disturbed in the case of the expanded graphite flow-field plates because the GDL is compressed excessively due to its flexibility.

Suggested Citation

  • Park, Taehyun & Chang, Ikwhang & Lee, Yoon Ho & Ji, Sanghoon & Cha, Suk Won, 2014. "Analysis of operational characteristics of polymer electrolyte fuel cell with expanded graphite flow-field plates via electrochemical impedance investigation," Energy, Elsevier, vol. 66(C), pages 77-81.
  • Handle: RePEc:eee:energy:v:66:y:2014:i:c:p:77-81
    DOI: 10.1016/j.energy.2013.11.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213010219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.11.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singdeo, Debanand & Dey, Tapobrata & Ghosh, Prakash C., 2011. "Modelling of start-up time for high temperature polymer electrolyte fuel cells," Energy, Elsevier, vol. 36(10), pages 6081-6089.
    2. Ghosh, P.C. & Vasudeva, U., 2011. "Analysis of 3000T class submarines equipped with polymer electrolyte fuel cells," Energy, Elsevier, vol. 36(5), pages 3138-3147.
    3. Carton, J.G. & Olabi, A.G., 2010. "Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 35(7), pages 2796-2806.
    4. Siegel, C., 2008. "Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells," Energy, Elsevier, vol. 33(9), pages 1331-1352.
    5. Carton, J.G. & Olabi, A.G., 2010. "Wind/hydrogen hybrid systems: Opportunity for Ireland’s wind resource to provide consistent sustainable energy supply," Energy, Elsevier, vol. 35(12), pages 4536-4544.
    6. Carton, J.G. & Lawlor, V. & Olabi, A.G. & Hochenauer, C. & Zauner, G., 2012. "Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels," Energy, Elsevier, vol. 39(1), pages 63-73.
    7. Huang, Chia-Hung & Liu, Shyh-Jiun & Hwang, Weng-Sing, 2011. "Chelating agent assisted heat treatment of carbon supported cobalt oxide nanoparticle for use as cathode catalyst of polymer electrolyte membrane fuel cell (PEMFC)," Energy, Elsevier, vol. 36(7), pages 4410-4414.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gye-Eun Jang & Gu-Young Cho, 2022. "Effects of Ag Current Collecting Layer Fabricated by Sputter for 3D-Printed Polymer Bipolar Plate of Ultra-Light Polymer Electrolyte Membrane Fuel Cells," Sustainability, MDPI, vol. 14(5), pages 1-9, March.
    2. Changhee Song & Sanghoon Lee & Bonhyun Gu & Ikwhang Chang & Gu Young Cho & Jong Dae Baek & Suk Won Cha, 2020. "A Study of Anode-Supported Solid Oxide Fuel Cell Modeling and Optimization Using Neural Network and Multi-Armed Bandit Algorithm," Energies, MDPI, vol. 13(7), pages 1-11, April.
    3. Iranzo, Alfredo & Boillat, Pierre, 2018. "CFD simulation of the transient gas transport in a PEM fuel cell cathode during AC impedance testing considering liquid water effects," Energy, Elsevier, vol. 158(C), pages 449-457.
    4. Lee, Sanghoon & Lee, Yeageun & Park, Joonho & Yu, Wonjong & Cho, Gu Young & Kim, Yusung & Cha, Suk Won, 2019. "Effect of plasma-enhanced atomic layer deposited YSZ inter-layer on cathode interface of GDC electrolyte in thin film solid oxide fuel cells," Renewable Energy, Elsevier, vol. 144(C), pages 123-128.
    5. Kang, Yun Sik & Won, Phillip & Ko, Seung Hwan & Park, Taehyun & Yoo, Sung Jong, 2019. "Bending-durable membrane-electrode assembly using metal nanowires for bendable polymer electrolyte membrane fuel cell," Energy, Elsevier, vol. 172(C), pages 874-880.
    6. Park, Taehyun & Chang, Ikwhang & Jung, Ju Hae & Lee, Ha Beom & Ko, Seung Hwan & O'Hayre, Ryan & Yoo, Sung Jong & Cha, Suk Won, 2017. "Effect of assembly pressure on the performance of a bendable polymer electrolyte fuel cell based on a silver nanowire current collector," Energy, Elsevier, vol. 134(C), pages 412-419.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Wenyin & Cai, Zhihua, 2013. "Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution," Energy, Elsevier, vol. 59(C), pages 356-364.
    2. Huang, Zhen-Ming & Su, Ay & Liu, Ying-Chieh, 2013. "Hydrogen generator system using Ru catalyst for PEMFC (proton exchange membrane fuel cell) applications," Energy, Elsevier, vol. 51(C), pages 230-236.
    3. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    4. Rahnavard, Aylin & Rowshanzamir, Soosan & Parnian, Mohammad Javad & Amirkhanlou, Gholam Reza, 2015. "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells," Energy, Elsevier, vol. 82(C), pages 746-757.
    5. Díaz, Manuel Antonio & Iranzo, Alfredo & Rosa, Felipe & Isorna, Fernando & López, Eduardo & Bolivar, Juan Pedro, 2015. "Effect of carbon dioxide on the contamination of low temperature and high temperature PEM (polymer electrolyte membrane) fuel cells. Influence of temperature, relative humidity and analysis of regener," Energy, Elsevier, vol. 90(P1), pages 299-309.
    6. An, Myung-Gi & Mehmood, Asad & Hwang, Jinyeon & Ha, Heung Yong, 2016. "A novel method of methanol concentration control through feedback of the amplitudes of output voltage fluctuations for direct methanol fuel cells," Energy, Elsevier, vol. 100(C), pages 217-226.
    7. Wang, Luwen & He, Mingyan & Hu, Yue & Zhang, Yufeng & Liu, Xiaowei & Wang, Gaofeng, 2015. "A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications," Energy, Elsevier, vol. 82(C), pages 229-235.
    8. Chou, Chang-Chen & Liu, Cheng-Hong & Chen, Bing-Hung, 2014. "Effects of reduction temperature and pH value of polyol process on reduced graphene oxide supported Pt electrocatalysts for oxygen reduction reaction," Energy, Elsevier, vol. 70(C), pages 231-238.
    9. Xing, Lei & Cai, Qiong & Xu, Chenxi & Liu, Chunbo & Scott, Keith & Yan, Yongsheng, 2016. "Numerical study of the effect of relative humidity and stoichiometric flow ratio on PEM (proton exchange membrane) fuel cell performance with various channel lengths: An anode partial flooding modelli," Energy, Elsevier, vol. 106(C), pages 631-645.
    10. Afshari, E. & Mosharaf-Dehkordi, M. & Rajabian, H., 2017. "An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor," Energy, Elsevier, vol. 118(C), pages 705-715.
    11. Fofana, Daouda & Natarajan, Sadesh Kumar & Hamelin, Jean & Benard, Pierre, 2014. "Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach," Energy, Elsevier, vol. 64(C), pages 398-403.
    12. Beltrán-Gastélum, M. & Salazar-Gastélum, M.I. & Félix-Navarro, R.M. & Pérez-Sicairos, S. & Reynoso-Soto, E.A. & Lin, S.W. & Flores-Hernández, J.R. & Romero-Castañón, T. & Albarrán-Sánchez, I.L. & Para, 2016. "Evaluation of PtAu/MWCNT (Multiwalled Carbon Nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 109(C), pages 446-455.
    13. Blal, Mohamed & Benatiallah, Ali & NeÇaibia, Ammar & Lachtar, Salah & Sahouane, Nordine & Belasri, Ahmed, 2019. "Contribution and investigation to compare models parameters of (PEMFC), comprehensives review of fuel cell models and their degradation," Energy, Elsevier, vol. 168(C), pages 182-199.
    14. Ren, Zhijun & Zhang, Dongming & Wang, Zaiyi, 2012. "Stacks with TiN/titanium as the bipolar plate for PEMFCs," Energy, Elsevier, vol. 48(1), pages 577-581.
    15. Carton, J.G. & Lawlor, V. & Olabi, A.G. & Hochenauer, C. & Zauner, G., 2012. "Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels," Energy, Elsevier, vol. 39(1), pages 63-73.
    16. Bizon, Nicu & Radut, Marin & Oproescu, Mihai, 2015. "Energy control strategies for the Fuel Cell Hybrid Power Source under unknown load profile," Energy, Elsevier, vol. 86(C), pages 31-41.
    17. Stoševski, Ivan & Krstić, Jelena & Milikić, Jadranka & Šljukić, Biljana & Kačarević-Popović, Zorica & Mentus, Slavko & Miljanić, Šćepan, 2016. "Radiolitically synthesized nano Ag/C catalysts for oxygen reduction and borohydride oxidation reactions in alkaline media, for potential applications in fuel cells," Energy, Elsevier, vol. 101(C), pages 79-90.
    18. Ramiar, A. & Mahmoudi, A.H. & Esmaili, Q. & Abdollahzadeh, M., 2016. "Influence of cathode flow pulsation on performance of proton exchange membrane fuel cell with interdigitated gas distributors," Energy, Elsevier, vol. 94(C), pages 206-217.
    19. Iranzo, Alfredo & Boillat, Pierre & Biesdorf, Johannes & Salva, Antonio, 2015. "Investigation of the liquid water distributions in a 50 cm2 PEM fuel cell: Effects of reactants relative humidity, current density, and cathode stoichiometry," Energy, Elsevier, vol. 82(C), pages 914-921.
    20. Sayadi, Parvin & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Study of hydrogen crossover and proton conductivity of self-humidifying nanocomposite proton exchange membrane based on sulfonated poly (ether ether ketone)," Energy, Elsevier, vol. 94(C), pages 292-303.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:66:y:2014:i:c:p:77-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.