IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v66y2014icp577-587.html
   My bibliography  Save this article

Experimental study on the operating characteristics of an inner preheating transpiring wall reactor for supercritical water oxidation: Temperature profiles and product properties

Author

Listed:
  • Zhang, Fengming
  • Xu, Chunyan
  • Zhang, Yong
  • Chen, Shouyan
  • Chen, Guifang
  • Ma, Chunyuan

Abstract

A new process to generate multiple thermal fluids by supercritical water oxidation (SCWO) was proposed to enhance oil recovery. An inner preheating transpiring wall reactor for SCWO was designed and tested to avoid plugging in the preheating section. Hot water (400–600°C) was used as auxiliary heat source to preheat the feed to the reaction temperature. The effect of different operating parameters on the performance of the inner preheating transpiring wall reactor was investigated, and the optimized operating parameters were determined based on temperature profiles and product properties. The reaction temperature is close to 900°C at an auxiliary heat source flow of 2.79kg/h, and the auxiliary heat source flow is determined at 6–14kg/h to avoid the overheating of the reactor. The useful reaction time is used to quantitatively describe the feed degradation efficiency. The outlet concentration of total organic carbon (TOCout) and CO in the effluent gradually decreases with increasing useful reaction time. The useful reaction time needed for complete oxidation of the feed is 10.5s for the reactor.

Suggested Citation

  • Zhang, Fengming & Xu, Chunyan & Zhang, Yong & Chen, Shouyan & Chen, Guifang & Ma, Chunyuan, 2014. "Experimental study on the operating characteristics of an inner preheating transpiring wall reactor for supercritical water oxidation: Temperature profiles and product properties," Energy, Elsevier, vol. 66(C), pages 577-587.
  • Handle: RePEc:eee:energy:v:66:y:2014:i:c:p:577-587
    DOI: 10.1016/j.energy.2014.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214001364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donatini, Franco & Gigliucci, Gianluca & Riccardi, Juri & Schiavetti, Massimo & Gabbrielli, Roberto & Briola, Stefano, 2009. "Supercritical water oxidation of coal in power plants with low CO2 emissions," Energy, Elsevier, vol. 34(12), pages 2144-2150.
    2. Emberley, S. & Hutcheon, I. & Shevalier, M. & Durocher, K. & Gunter, W.D. & Perkins, E.H., 2004. "Geochemical monitoring of fluid-rock interaction and CO2 storage at the Weyburn CO2-injection enhanced oil recovery site, Saskatchewan, Canada," Energy, Elsevier, vol. 29(9), pages 1393-1401.
    3. van Bergen, F. & Gale, J. & Damen, K.J. & Wildenborg, A.F.B., 2004. "Worldwide selection of early opportunities for CO2-enhanced oil recovery and CO2-enhanced coal bed methane production," Energy, Elsevier, vol. 29(9), pages 1611-1621.
    4. Gutiérrez Ortiz, F.J. & Serrera, A. & Galera, S. & Ollero, P., 2013. "Experimental study of the supercritical water reforming of glycerol without the addition of a catalyst," Energy, Elsevier, vol. 56(C), pages 193-206.
    5. Vostrikov, Anatoly A. & Fedyaeva, Oxana N. & Dubov, Dmitry Y. & Psarov, Sergey A. & Sokol, Mikhail Y., 2011. "Conversion of brown coal in supercritical water without and with addition of oxygen at continuous supply of coal–water slurry," Energy, Elsevier, vol. 36(4), pages 1948-1955.
    6. Khansari, Zeinab & Kapadia, Punitkumar & Mahinpey, Nader & Gates, Ian D., 2014. "A new reaction model for low temperature oxidation of heavy oil: Experiments and numerical modeling," Energy, Elsevier, vol. 64(C), pages 419-428.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Yingfei & Zhang, Fengming & Liang, Zhaojian & Li, Yufeng & Wu, Tong, 2023. "Effect of hydrothermal flame generation methods on energy consumption and economic performance of supercritical water oxidation systems," Energy, Elsevier, vol. 266(C).
    2. Zhang, Fengming & Li, Yufeng & Jia, Cuijie & Shen, Boya, 2021. "Effect of evaporation on the energy conversion of a supercritical water oxidation system containing a hydrothermal flame," Energy, Elsevier, vol. 226(C).
    3. Knez, Ž. & Markočič, E. & Leitgeb, M. & Primožič, M. & Knez Hrnčič, M. & Škerget, M., 2014. "Industrial applications of supercritical fluids: A review," Energy, Elsevier, vol. 77(C), pages 235-243.
    4. Cabeza, Pablo & Silva Queiroz, Joao Paulo & Criado, Manuel & Jiménez, Cristina & Bermejo, Maria Dolores & Mato, Fidel & Cocero, Maria Jose, 2015. "Supercritical water oxidation for energy production by hydrothermal flame as internal heat source. Experimental results and energetic study," Energy, Elsevier, vol. 90(P2), pages 1584-1594.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Junhao & Sun, Shichang & Cui, Chongwei & Ma, Rui & Fang, Lin & Zhang, Peixin & Quan, Zonggang & Song, Xin & Yan, Jianglong & Luo, Juan, 2019. "Hydrogen-rich bio-gas generation and optimization in relation to heavy metals immobilization during Pd-catalyzed supercritical water gasification of sludge," Energy, Elsevier, vol. 189(C).
    2. Zhong, Jie & Wang, Pan & Zhang, Yang & Yan, Youguo & Hu, Songqing & Zhang, Jun, 2013. "Adsorption mechanism of oil components on water-wet mineral surface: A molecular dynamics simulation study," Energy, Elsevier, vol. 59(C), pages 295-300.
    3. Xiongwen Chen, 2014. "A Case Study of Monitoring Emission from CO2 Enhanced Oil Recovery by Remote Sensing Data," Energy and Environment Research, Canadian Center of Science and Education, vol. 4(3), pages 1-33, December.
    4. Sun, Fengrui & Yao, Yuedong & Chen, Mingqiang & Li, Xiangfang & Zhao, Lin & Meng, Ye & Sun, Zheng & Zhang, Tao & Feng, Dong, 2017. "Performance analysis of superheated steam injection for heavy oil recovery and modeling of wellbore heat efficiency," Energy, Elsevier, vol. 125(C), pages 795-804.
    5. Setyawan, Hendrix Y. & Zhu, Mingming & Zhang, Zhezi & Zhang, Dongke, 2016. "Ignition and combustion characteristics of single droplets of a crude glycerol in comparison with pure glycerol, petroleum diesel, biodiesel and ethanol," Energy, Elsevier, vol. 113(C), pages 153-159.
    6. Yang, Junyu & Xu, Qianghui & Jiang, Hang & Shi, Lin, 2021. "Reaction model of low asphaltene heavy oil from ramped temperature oxidation experimental analyses and numerical simulations," Energy, Elsevier, vol. 219(C).
    7. Zhao, Shuai & Pu, Wanfen & Peng, Xiaoqiang & Zhang, Jizhou & Ren, Hao, 2021. "Low-temperature oxidation of heavy crude oil characterized by TG, DSC, GC-MS, and negative ion ESI FT-ICR MS," Energy, Elsevier, vol. 214(C).
    8. Xu, Jialing & Rong, Siqi & Sun, Jingli & Peng, Zhiyong & Jin, Hui & Guo, Liejin & Zhang, Xiang & Zhou, Teng, 2022. "Optimal design of non-isothermal supercritical water gasification reactor: From biomass to hydrogen," Energy, Elsevier, vol. 244(PB).
    9. Jun Pu & Xuejie Qin & Feifei Gou & Wenchao Fang & Fengjie Peng & Runxi Wang & Zhaoli Guo, 2018. "Molecular Modeling of CO 2 and n -Octane in Solubility Process and α -Quartz Nanoslit," Energies, MDPI, vol. 11(11), pages 1-11, November.
    10. Xue, Xiaodong & Liu, Changchun & Han, Wei & Wang, Zefeng & Zhang, Na & Jin, Hongguang & Wang, Xiaodong, 2023. "Proposal and investigation of a high-efficiency coal-fired power generation system enabled by chemical recuperative supercritical water coal gasification," Energy, Elsevier, vol. 267(C).
    11. Zhou, Xianmin & Wu, Yu-Shu & Chen, Hao & Elsayed, Mahmoud & Yu, Wei & Zhao, Xinrui & Murtaza, Mobeen & Shahzad Kamal, Muhammad & Zafar Khan, Sarmad & Al-Abdrabalnabi, Ridha & Ren, Bo, 2024. "Review of Carbon dioxide utilization and sequestration in depleted oil reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    12. Chen, Bailian & Pawar, Rajesh J., 2019. "Characterization of CO2 storage and enhanced oil recovery in residual oil zones," Energy, Elsevier, vol. 183(C), pages 291-304.
    13. Wang, Dechao & Jin, Lijun & Li, Yang & Yao, Demeng & Wang, Jiaofei & Hu, Haoquan, 2018. "Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3," Energy, Elsevier, vol. 162(C), pages 542-553.
    14. Chen, Zhewen & Zhang, Xiaosong & Han, Wei & Gao, Lin & Li, Sheng, 2018. "A power generation system with integrated supercritical water gasification of coal and CO2 capture," Energy, Elsevier, vol. 142(C), pages 723-730.
    15. Knez, Ž. & Markočič, E. & Leitgeb, M. & Primožič, M. & Knez Hrnčič, M. & Škerget, M., 2014. "Industrial applications of supercritical fluids: A review," Energy, Elsevier, vol. 77(C), pages 235-243.
    16. Ganesh, Ibram, 2015. "Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 904-932.
    17. Buttinelli, M. & Procesi, M. & Cantucci, B. & Quattrocchi, F. & Boschi, E., 2011. "The geo-database of caprock quality and deep saline aquifers distribution for geological storage of CO2 in Italy," Energy, Elsevier, vol. 36(5), pages 2968-2983.
    18. Fan, Chaojun & Elsworth, Derek & Li, Sheng & Zhou, Lijun & Yang, Zhenhua & Song, Yu, 2019. "Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery," Energy, Elsevier, vol. 173(C), pages 1054-1077.
    19. Florentina Maxim & Iuliana Poenaru & Elena Ecaterina Toma & Giuseppe Stefan Stoian & Florina Teodorescu & Cristian Hornoiu & Speranta Tanasescu, 2021. "Functional Materials for Waste-to-Energy Processes in Supercritical Water," Energies, MDPI, vol. 14(21), pages 1-23, November.
    20. Yang, Lin & Zhang, Xian & McAlinden, Karl J., 2016. "The effect of trust on people's acceptance of CCS (carbon capture and storage) technologies: Evidence from a survey in the People's Republic of China," Energy, Elsevier, vol. 96(C), pages 69-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:66:y:2014:i:c:p:577-587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.