IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v266y2023ics0360544222033382.html
   My bibliography  Save this article

Effect of hydrothermal flame generation methods on energy consumption and economic performance of supercritical water oxidation systems

Author

Listed:
  • Huang, Yingfei
  • Zhang, Fengming
  • Liang, Zhaojian
  • Li, Yufeng
  • Wu, Tong

Abstract

Hydrothermal flames are critical to solving preheating problems and enhancing feed degradation in supercritical water oxidation (SCWO) systems. In this work, different hydrothermal flame generation methods including hot water injection, evaporation concentration, and addition of auxiliary fuel are proposed for SCWO of cutting fluids. The proposed systems are simulated using Aspen Plus 8.2, and the simulation model is validated by comparisons with experimental temperature profiles and product properties. A low ratio between the heat source flow and the feed flow (FR) requires a high heat source temperature to keep the hydrothermal flame stable and results in a high electricity consumption, and FR = 2 is chosen as the optimum condition for the SCWO system with hot water injection (SCWOH). The increase in concentration ratio and fuel concentration can effectively reduce the energy consumption for the SCWO systems with evaporation concentration (SCWOE) and addition of auxiliary fuel (SCWOF), respectively. The exergy analysis results indicate that most of exergy inputs are destructed inside the system, and the exergy distribution coefficients of the reactor exceed 80% in the SCWOE and SCWOF. Economic analysis results show the SCWOE has the lowest treatment cost of 95.9 USD/t.

Suggested Citation

  • Huang, Yingfei & Zhang, Fengming & Liang, Zhaojian & Li, Yufeng & Wu, Tong, 2023. "Effect of hydrothermal flame generation methods on energy consumption and economic performance of supercritical water oxidation systems," Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033382
    DOI: 10.1016/j.energy.2022.126452
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222033382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Fengming & Xu, Chunyan & Zhang, Yong & Chen, Shouyan & Chen, Guifang & Ma, Chunyuan, 2014. "Experimental study on the operating characteristics of an inner preheating transpiring wall reactor for supercritical water oxidation: Temperature profiles and product properties," Energy, Elsevier, vol. 66(C), pages 577-587.
    2. Liu, Jia & Hu, Nan & Fan, Li-Wu, 2022. "Optimal design and thermodynamic analysis on the hydrogen oxidation reactor in a combined hydrogen production and power generation system based on coal gasification in supercritical water," Energy, Elsevier, vol. 238(PB).
    3. Cabeza, Pablo & Silva Queiroz, Joao Paulo & Criado, Manuel & Jiménez, Cristina & Bermejo, Maria Dolores & Mato, Fidel & Cocero, Maria Jose, 2015. "Supercritical water oxidation for energy production by hydrothermal flame as internal heat source. Experimental results and energetic study," Energy, Elsevier, vol. 90(P2), pages 1584-1594.
    4. Yan, Xia & Jie, Wu & Minjun, Shi & Shouyang, Wang & Zhuoying, Zhang, 2022. "China's regional imbalance in electricity demand, power and water pricing - From the perspective of electricity-related virtual water transmission," Energy, Elsevier, vol. 257(C).
    5. Zhang, Fengming & Li, Yufeng & Jia, Cuijie & Shen, Boya, 2021. "Effect of evaporation on the energy conversion of a supercritical water oxidation system containing a hydrothermal flame," Energy, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Yuxin & Liu, Yunyun & Zhang, Fengming & Rong, Weiqing, 2024. "Thermodynamic and exergy assessments of supercritical water gasification of oily sludge assisted by hydrothermal flame," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Fengming & Li, Yufeng & Jia, Cuijie & Shen, Boya, 2021. "Effect of evaporation on the energy conversion of a supercritical water oxidation system containing a hydrothermal flame," Energy, Elsevier, vol. 226(C).
    2. Xu, Jialing & Rong, Siqi & Sun, Jingli & Peng, Zhiyong & Jin, Hui & Guo, Liejin & Zhang, Xiang & Zhou, Teng, 2022. "Optimal design of non-isothermal supercritical water gasification reactor: From biomass to hydrogen," Energy, Elsevier, vol. 244(PB).
    3. Knez, Ž. & Markočič, E. & Leitgeb, M. & Primožič, M. & Knez Hrnčič, M. & Škerget, M., 2014. "Industrial applications of supercritical fluids: A review," Energy, Elsevier, vol. 77(C), pages 235-243.
    4. Haojie Gao & Zhisong Wen & Lizhu Jin & Xin Xiong & Yuezhao Zhu, 2022. "Gasification Characteristics of High Moisture Content Lignite under CO 2 and Auto-Generated Steam Atmosphere in a Moving Bed Tubular Reactor," Energies, MDPI, vol. 15(18), pages 1-10, September.
    5. Cabeza, Pablo & Silva Queiroz, Joao Paulo & Criado, Manuel & Jiménez, Cristina & Bermejo, Maria Dolores & Mato, Fidel & Cocero, Maria Jose, 2015. "Supercritical water oxidation for energy production by hydrothermal flame as internal heat source. Experimental results and energetic study," Energy, Elsevier, vol. 90(P2), pages 1584-1594.
    6. Chen, Zhong & Chen, Hongzhen & Xu, Yuanjian & Hu, Mian & Hu, Zhongting & Wang, Junliang & Pan, Zhiyan, 2023. "Reactor for biomass conversion and waste treatment in supercritical water: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    7. Hasan Murat Ertuğrul & Mustafa Tevfik Kartal & Serpil Kılıç Depren & Uğur Soytaş, 2022. "Determinants of Electricity Prices in Turkey: An Application of Machine Learning and Time Series Models," Energies, MDPI, vol. 15(20), pages 1-17, October.
    8. Hrnčič, Maša Knez & Kravanja, Gregor & Knez, Željko, 2016. "Hydrothermal treatment of biomass for energy and chemicals," Energy, Elsevier, vol. 116(P2), pages 1312-1322.
    9. Liu, Jia & Hu, Nan & Fan, Li-Wu, 2022. "Optimal design and thermodynamic analysis on the hydrogen oxidation reactor in a combined hydrogen production and power generation system based on coal gasification in supercritical water," Energy, Elsevier, vol. 238(PB).
    10. He, Ruofan & Wan, Panbing & Yang, Mian, 2024. "The resource curse in energy-rich regions: Evidence from China's ultra-high voltage transmission," Energy, Elsevier, vol. 304(C).
    11. Jia, Zhijie & Wen, Shiyan & Wang, Yao, 2023. "Power coming from the sky: Economic benefits of inter-regional power transmission in China," Energy Economics, Elsevier, vol. 119(C).
    12. Guo, Shenghui & Wang, Yu & Shang, Fei & Yi, Lei & Chen, Yunan & Chen, Bin & Guo, Liejin, 2023. "Thermodynamic analysis of the series system for the supercritical water gasification of coal-water slurry," Energy, Elsevier, vol. 283(C).
    13. Qiu, Yuxin & Liu, Yunyun & Zhang, Fengming & Rong, Weiqing, 2024. "Thermodynamic and exergy assessments of supercritical water gasification of oily sludge assisted by hydrothermal flame," Energy, Elsevier, vol. 296(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.