IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v58y2013icp417-425.html
   My bibliography  Save this article

Estimation of daily global solar irradiation by coupling ground measurements of bright sunshine hours to satellite imagery

Author

Listed:
  • Ener Rusen, Selmin
  • Hammer, Annette
  • Akinoglu, Bulent G.

Abstract

In this work, the current version of the satellite-based HELIOSAT method and ground-based linear Ångström–Prescott type relations are used in combination. The first approach is based on the use of a correlation between daily bright sunshine hours (s) and cloud index (n). In the second approach a new correlation is proposed between daily solar irradiation and daily data of s and n which is based on a physical parameterization. The performances of the proposed two combined models are tested against conventional methods. We test the use of obtained correlation coefficients for nearby locations. Our results show that the use of sunshine duration together with the cloud index is quite satisfactory in the estimation of daily horizontal global solar irradiation. We propose to use the new approaches to estimate daily global irradiation when the bright sunshine hours data is available for the location of interest, provided that some regression coefficients are determined using the data of a nearby station. In addition, if surface data for a close location does not exist then it is recommended to use satellite models like HELIOSAT or the new approaches instead the Ångström type models.

Suggested Citation

  • Ener Rusen, Selmin & Hammer, Annette & Akinoglu, Bulent G., 2013. "Estimation of daily global solar irradiation by coupling ground measurements of bright sunshine hours to satellite imagery," Energy, Elsevier, vol. 58(C), pages 417-425.
  • Handle: RePEc:eee:energy:v:58:y:2013:i:c:p:417-425
    DOI: 10.1016/j.energy.2013.05.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421300491X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.05.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badescu, Viorel & Gueymard, Christian A. & Cheval, Sorin & Oprea, Cristian & Baciu, Madalina & Dumitrescu, Alexandru & Iacobescu, Flavius & Milos, Ioan & Rada, Costel, 2012. "Computing global and diffuse solar hourly irradiation on clear sky. Review and testing of 54 models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1636-1656.
    2. Akinoǧlu, B.G. & Shariah, A.M. & Ecevit, A., 1999. "Solar domestic water heating in Turkey," Energy, Elsevier, vol. 24(5), pages 363-374.
    3. Bakirci, Kadir, 2009. "Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey," Energy, Elsevier, vol. 34(4), pages 485-501.
    4. Rusen, Selmin Ener & Hammer, Annette & Akinoglu, Bulent G., 2013. "Coupling satellite images with surface measurements of bright sunshine hours to estimate daily solar irradiation on horizontal surface," Renewable Energy, Elsevier, vol. 55(C), pages 212-219.
    5. Wan, Kevin K.W. & Tang, H.L. & Yang, Liu & Lam, Joseph C., 2008. "An analysis of thermal and solar zone radiation models using an Angstrom–Prescott equation and artificial neural networks," Energy, Elsevier, vol. 33(7), pages 1115-1127.
    6. Katiyar, A.K. & Pandey, Chanchal Kumar, 2010. "Simple correlation for estimating the global solar radiation on horizontal surfaces in India," Energy, Elsevier, vol. 35(12), pages 5043-5048.
    7. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2012. "Impact of climate change on energy use in the built environment in different climate zones – A review," Energy, Elsevier, vol. 42(1), pages 103-112.
    8. Zang, Haixiang & Xu, Qingshan & Bian, Haihong, 2012. "Generation of typical solar radiation data for different climates of China," Energy, Elsevier, vol. 38(1), pages 236-248.
    9. Akinoǧlu, B.G., 1991. "A review of sunshine-based models used to estimate monthly average global solar radiation," Renewable Energy, Elsevier, vol. 1(3), pages 479-497.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shamshirband, Shahaboddin & Mohammadi, Kasra & Khorasanizadeh, Hossein & Yee, Por Lip & Lee, Malrey & Petković, Dalibor & Zalnezhad, Erfan, 2016. "Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 428-435.
    2. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    3. Yıldırım, H. Başak & Teke, Ahmet & Antonanzas-Torres, Fernando, 2018. "Evaluation of classical parametric models for estimating solar radiation in the Eastern Mediterranean region of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2053-2065.
    4. De Giorgi, M.G. & Malvoni, M. & Congedo, P.M., 2016. "Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine," Energy, Elsevier, vol. 107(C), pages 360-373.
    5. Clauzel, Léo & Anquetin, Sandrine & Lavaysse, Christophe & Tremoy, Guillaume & Raynaud, Damien, 2024. "West African operational daily solar forecast errors and their link with meteorological conditions," Renewable Energy, Elsevier, vol. 224(C).
    6. Ozden, Talat & Akinoglu, Bulent G. & Turan, Rasit, 2017. "Long term outdoor performances of three different on-grid PV arrays in central Anatolia – An extended analysis," Renewable Energy, Elsevier, vol. 101(C), pages 182-195.
    7. Alonso-Montesinos, J. & Batlles, F.J., 2015. "The use of a sky camera for solar radiation estimation based on digital image processing," Energy, Elsevier, vol. 90(P1), pages 377-386.
    8. Starke, Allan R. & Lemos, Leonardo F.L. & Barni, Cristian M. & Machado, Rubinei D. & Cardemil, José M. & Boland, John & Colle, Sergio, 2021. "Assessing one-minute diffuse fraction models based on worldwide climate features," Renewable Energy, Elsevier, vol. 177(C), pages 700-714.
    9. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
    10. Alonso-Montesinos, J. & Batlles, F.J., 2015. "Solar radiation forecasting in the short- and medium-term under all sky conditions," Energy, Elsevier, vol. 83(C), pages 387-393.
    11. Kostić, Rastko & Mikulović, Jovan, 2017. "The empirical models for estimating solar insolation in Serbia by using meteorological data on cloudiness," Renewable Energy, Elsevier, vol. 114(PB), pages 1281-1293.
    12. Köhler, Carmen & Steiner, Andrea & Saint-Drenan, Yves-Marie & Ernst, Dominique & Bergmann-Dick, Anja & Zirkelbach, Mathias & Ben Bouallègue, Zied & Metzinger, Isabel & Ritter, Bodo, 2017. "Critical weather situations for renewable energies – Part B: Low stratus risk for solar power," Renewable Energy, Elsevier, vol. 101(C), pages 794-803.
    13. Ramon-Marin, Miquel & Sumper, Andreas & Villafafila-Robles, Roberto & Bergas-Jane, Joan, 2014. "Active power estimation of photovoltaic generators for distribution network planning based on correlation models," Energy, Elsevier, vol. 64(C), pages 758-770.
    14. Mohammadi, Kasra & Shamshirband, Shahaboddin & Petković, Dalibor & Khorasanizadeh, Hossein, 2016. "Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1570-1579.
    15. Alonso, J. & Batlles, F.J., 2014. "Short and medium-term cloudiness forecasting using remote sensing techniques and sky camera imagery," Energy, Elsevier, vol. 73(C), pages 890-897.
    16. Gao, Xiu-Yan & Huang, Chun-Lin & Zhang, Zhen-Huan & Chen, Qi-Xiang & Zheng, Yu & Fu, Di-Song & Yuan, Yuan, 2024. "Global horizontal irradiance prediction model for multi-site fusion under different aerosol types," Renewable Energy, Elsevier, vol. 227(C).
    17. Li, Peidu & Gao, Xiaoqing & Li, Zhenchao & Zhou, Xiyin, 2022. "Effect of the temperature difference between land and lake on photovoltaic power generation," Renewable Energy, Elsevier, vol. 185(C), pages 86-95.
    18. Alami Merrouni, Ahmed & Elwali Elalaoui, Fakhreddine & Mezrhab, Ahmed & Mezrhab, Abdelhamid & Ghennioui, Abdellatif, 2018. "Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco," Renewable Energy, Elsevier, vol. 119(C), pages 863-873.
    19. Boukelia, T.E. & Ghellab, A. & Laouafi, A. & Bouraoui, A. & Kabar, Y., 2020. "Cooling performances time series of CSP plants: Calculation and analysis using regression and ANN models," Renewable Energy, Elsevier, vol. 157(C), pages 809-827.
    20. Rohani, Abbas & Taki, Morteza & Abdollahpour, Masoumeh, 2018. "A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I)," Renewable Energy, Elsevier, vol. 115(C), pages 411-422.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jianyuan & Zhao, Li & Deng, Shuai & Xu, Weicong & Zhang, Ying, 2017. "A critical review of the models used to estimate solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 314-329.
    2. Paulescu, M. & Stefu, N. & Calinoiu, D. & Paulescu, E. & Pop, N. & Boata, R. & Mares, O., 2016. "Ångström–Prescott equation: Physical basis, empirical models and sensitivity analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 495-506.
    3. Li, Huashan & Lian, Yongwang & Wang, Xianlong & Ma, Weibin & Zhao, Liang, 2011. "Solar constant values for estimating solar radiation," Energy, Elsevier, vol. 36(3), pages 1785-1789.
    4. Prieto, Jesús-Ignacio & García, David, 2022. "Global solar radiation models: A critical review from the point of view of homogeneity and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Behrang, M.A. & Assareh, E. & Noghrehabadi, A.R. & Ghanbarzadeh, A., 2011. "New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique," Energy, Elsevier, vol. 36(5), pages 3036-3049.
    6. Hernández-Escobedo, Q. & Rodríguez-García, E. & Saldaña-Flores, R. & Fernández-García, A. & Manzano-Agugliaro, F., 2015. "Solar energy resource assessment in Mexican states along the Gulf of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 216-238.
    7. Dos Santos, Cícero Manoel & De Souza, José Leonaldo & Ferreira Junior, Ricardo Araujo & Tiba, Chigueru & de Melo, Rinaldo Oliveira & Lyra, Gustavo Bastos & Teodoro, Iêdo & Lyra, Guilherme Bastos & Lem, 2014. "On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil," Energy, Elsevier, vol. 71(C), pages 388-398.
    8. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
    9. Escrig, H. & Batlles, F.J. & Alonso, J. & Baena, F.M. & Bosch, J.L. & Salbidegoitia, I.B. & Burgaleta, J.I., 2013. "Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast," Energy, Elsevier, vol. 55(C), pages 853-859.
    10. Ağbulut, Ümit & Gürel, Ali Etem & Biçen, Yunus, 2021. "Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    12. Lu, Ning & Qin, Jun & Yang, Kun & Sun, Jiulin, 2011. "A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data," Energy, Elsevier, vol. 36(5), pages 3179-3188.
    13. Khorasanizadeh, H. & Mohammadi, K., 2013. "Introducing the best model for predicting the monthly mean global solar radiation over six major cities of Iran," Energy, Elsevier, vol. 51(C), pages 257-266.
    14. Halawa, Edward & GhaffarianHoseini, AmirHosein & Hin Wa Li, Danny, 2014. "Empirical correlations as a means for estimating monthly average daily global radiation: A critical overview," Renewable Energy, Elsevier, vol. 72(C), pages 149-153.
    15. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    16. Jiang, Yingni, 2009. "Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison with other empirical models," Energy, Elsevier, vol. 34(9), pages 1276-1283.
    17. Bouchouicha, Kada & Hassan, Muhammed A. & Bailek, Nadjem & Aoun, Nouar, 2019. "Estimating the global solar irradiation and optimizing the error estimates under Algerian desert climate," Renewable Energy, Elsevier, vol. 139(C), pages 844-858.
    18. Bakirci, Kadir, 2015. "Models for the estimation of diffuse solar radiation for typical cities in Turkey," Energy, Elsevier, vol. 82(C), pages 827-838.
    19. Besharat, Fariba & Dehghan, Ali A. & Faghih, Ahmad R., 2013. "Empirical models for estimating global solar radiation: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 798-821.
    20. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:58:y:2013:i:c:p:417-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.