IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v58y2013icp398-403.html
   My bibliography  Save this article

Experiment and simulation study on the flux distribution of lens-walled compound parabolic concentrator compared with mirror compound parabolic concentrator

Author

Listed:
  • Guiqiang, Li
  • Gang, Pei
  • Yuehong, Su
  • Jie, Ji
  • Riffat, Saffa B.

Abstract

Preliminary lens-walled CPC (compound parabolic concentrator) was proposed owing to its larger half acceptance angle, but in fact, it has another advantage of more uniform flux distribution than mirror CPC with the same geometrical concentration ratio. In this paper, in order to firstly evaluate the flux distribution of lens-walled CPC comprehensively, a lens-walled CPC PV (compound parabolic concentrator photovoltaic) was fabricated and tested at the different incidence angles comparison with mirror CPC PV. The experimental results showed that the FF (fill-factor) of the mirror CPC PV dropped more sharply than that of the lens-walled CPC PV, which indicated that the lens-walled CPC has a more uniform flux distribution on PV (photovoltaic). In addition, a software simulation of the flux distribution between mirror CPC and lens-walled CPC was carried out. The simulation illustrated clearly this advantage of the lens-walled CPC, which directly demonstrated the experimental inference and would be significant for lens-walled CPC application.

Suggested Citation

  • Guiqiang, Li & Gang, Pei & Yuehong, Su & Jie, Ji & Riffat, Saffa B., 2013. "Experiment and simulation study on the flux distribution of lens-walled compound parabolic concentrator compared with mirror compound parabolic concentrator," Energy, Elsevier, vol. 58(C), pages 398-403.
  • Handle: RePEc:eee:energy:v:58:y:2013:i:c:p:398-403
    DOI: 10.1016/j.energy.2013.06.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213005252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.06.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O'Gallagher, J. & Winston, R. & Suresh, D. & Brown, C.T., 1987. "Design and test of an optimized secondary concentrator with potential cost benefits for solar energy conversion," Energy, Elsevier, vol. 12(3), pages 217-226.
    2. Zahedi, A., 2011. "Review of modelling details in relation to low-concentration solar concentrating photovoltaic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1609-1614, April.
    3. Buonomano, Annamaria & Calise, Francesco & Dentice d'Accadia, Massimo & Vanoli, Laura, 2013. "A novel solar trigeneration system based on concentrating photovoltaic/thermal collectors. Part 1: Design and simulation model," Energy, Elsevier, vol. 61(C), pages 59-71.
    4. Gang Pei & Guiqiang Li & Yuehong Su & Jie Ji & Saffa Riffat & Hongfei Zheng, 2012. "Preliminary Ray Tracing and Experimental Study on the Effect of Mirror Coating on the Optical Efficiency of a Solid Dielectric Compound Parabolic Concentrator," Energies, MDPI, vol. 5(9), pages 1-13, September.
    5. Lee, Chung-Jui & Lin, Jen-Fin, 2012. "High-efficiency concentrated optical module," Energy, Elsevier, vol. 44(1), pages 593-603.
    6. Harmim, A. & Merzouk, M. & Boukar, M. & Amar, M., 2012. "Performance study of a box-type solar cooker employing an asymmetric compound parabolic concentrator," Energy, Elsevier, vol. 47(1), pages 471-480.
    7. Tina, G.M. & Rosa-Clot, M. & Rosa-Clot, P. & Scandura, P.F., 2012. "Optical and thermal behavior of submerged photovoltaic solar panel: SP2," Energy, Elsevier, vol. 39(1), pages 17-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Lu, Yashun & Ji, Jie, 2018. "Life-cycle assessment of a low-concentration PV module for building south wall integration in China," Applied Energy, Elsevier, vol. 215(C), pages 174-185.
    2. Xu, Jintao & Chen, Fei & Xia, Entong & Gao, Chong & Deng, Chenggang, 2020. "An optimization design method and optical performance analysis on multi-sectioned compound parabolic concentrator with cylindrical absorber," Energy, Elsevier, vol. 197(C).
    3. Jafrancesco, David & Cardoso, Joao P. & Mutuberria, Amaia & Leonardi, Erminia & Les, Iñigo & Sansoni, Paola & Francini, Franco & Fontani, Daniela, 2018. "Optical simulation of a central receiver system: Comparison of different software tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 792-803.
    4. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    5. Li, Guiqiang & Lu, Yashun & Shittu, Samson & Zhao, Xudong, 2020. "Scale effect on electrical characteristics of CPC-PV," Energy, Elsevier, vol. 192(C).
    6. Abu-Bakar, Siti Hawa & Muhammad-Sukki, Firdaus & Freier, Daria & Ramirez-Iniguez, Roberto & Mallick, Tapas Kumar & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abubakar Mas'ud, Abdullahi & Md Yunus, No, 2015. "Optimisation of the performance of a novel rotationally asymmetrical optical concentrator design for building integrated photovoltaic system," Energy, Elsevier, vol. 90(P1), pages 1033-1045.
    7. Jingjing Tang & Yamei Yu & Runsheng Tang, 2018. "A Three-Dimensional Radiation Transfer Model to Evaluate Performance of Compound Parabolic Concentrator-Based Photovoltaic Systems," Energies, MDPI, vol. 11(4), pages 1-24, April.
    8. Xia, En-Tong & Xu, Jin-Tao & Chen, Fei, 2021. "Investigation on structural and optical characteristics for an improved compound parabolic concentrator based on cylindrical absorber," Energy, Elsevier, vol. 219(C).
    9. Guiqiang, Li & Gang, Pei & Yuehong, Su & Yunyun, Wang & Jie, Ji, 2014. "Design and investigation of a novel lens-walled compound parabolic concentrator with air gap," Applied Energy, Elsevier, vol. 125(C), pages 21-27.
    10. Xu, Shijie & Zhu, Qunzhi & Hu, Yan & Zhang, Tao, 2022. "Design and performance research of a new non-tracking low concentrating with lens for photovoltaic systems," Renewable Energy, Elsevier, vol. 192(C), pages 174-187.
    11. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Ji, Jie, 2018. "Effect of non-uniform illumination and temperature distribution on concentrating solar cell - A review," Energy, Elsevier, vol. 144(C), pages 1119-1136.
    12. Guihua Li & Jingjing Tang & Runsheng Tang, 2018. "A Theoretical Study on Performance and Design Optimization of Linear Dielectric Compound Parabolic Concentrating Photovoltaic Systems," Energies, MDPI, vol. 11(9), pages 1-30, September.
    13. Shanks, Katie & Senthilarasu, S. & Mallick, Tapas K., 2016. "Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 394-407.
    14. Santosh, R. & Kumaresan, G. & Pon Pavithiran, C.K. & Mathu, P. & Velraj, R., 2023. "Effect of geometric variation and solar flux distribution on performance enhancement of absorber tube thermal characteristics for compound parabolic collectors," Renewable Energy, Elsevier, vol. 210(C), pages 671-686.
    15. Li, Yongcai & Jiao, Feng & Chen, Fei & Zhang, Zhenhua, 2021. "Design optimization and optical performance analysis on multi-sectioned compound parabolic concentrator with plane absorber," Renewable Energy, Elsevier, vol. 168(C), pages 913-926.
    16. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Zhao, Xudong & Pei, Gang, 2019. "The design, construction and experimental characterization of a novel concentrating photovoltaic/daylighting window for green building roof," Energy, Elsevier, vol. 175(C), pages 1138-1152.
    17. Xuan, Qingdong & Li, Guiqiang & Yang, Honglun & Gao, Cai & Jiang, Bin & Liu, Xiangnong & Ji, Jie & Zhao, Xudong & Pei, Gang, 2021. "Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency," Energy, Elsevier, vol. 233(C).
    18. Deng, Chenggang & Chen, Fei, 2020. "Preliminary investigation on photo-thermal performance of a novel embedded building integrated solar evacuated tube collector with compound parabolic concentrator," Energy, Elsevier, vol. 202(C).
    19. Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
    20. Li, Guiqiang & Xuan, Qingdong & Zhao, Xudong & Pei, Gang & Ji, Jie & Su, Yuehong, 2018. "A novel concentrating photovoltaic/daylighting control system: Optical simulation and preliminary experimental analysis," Applied Energy, Elsevier, vol. 228(C), pages 1362-1372.
    21. Pavlović, Zoran T. & Kostić, Ljiljana T., 2015. "Variation of reflected radiation from all reflectors of a flat plate solar collector during a year," Energy, Elsevier, vol. 80(C), pages 75-84.
    22. Wang, Gang & Wang, Fasi & Chen, Zeshao & Hu, Peng & Cao, Ruifeng, 2019. "Experimental study and optical analyses of a multi-segment plate (MSP) concentrator for solar concentration photovoltaic (CPV) system," Renewable Energy, Elsevier, vol. 134(C), pages 284-291.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    2. Xuan, Qingdong & Li, Guiqiang & Yang, Honglun & Gao, Cai & Jiang, Bin & Liu, Xiangnong & Ji, Jie & Zhao, Xudong & Pei, Gang, 2021. "Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency," Energy, Elsevier, vol. 233(C).
    3. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    4. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    5. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    7. Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
    8. Zhang, Xueyan & Gao, Teng & Liu, Yang & Chen, Fei, 2023. "Construction and concentrating performance of a critically truncated compound parabolic concentrator without light escape," Energy, Elsevier, vol. 269(C).
    9. Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Narasingamurthi, Kulasekharan & Saidur, R., 2022. "Prototype of a novel hybrid concentrator photovoltaic/thermal and solar thermoelectric generator system for outdoor study," Renewable Energy, Elsevier, vol. 201(P1), pages 224-239.
    10. Golonis, Chrysanthos & Skiadopoulos, Anastasios & Manolakos, Dimitris & Kosmadakis, George, 2021. "Assessment of the performance of a low-temperature Organic Rankine Cycle engine coupled with a concentrating PV-Thermal system," Renewable Energy, Elsevier, vol. 179(C), pages 1085-1097.
    11. Li, Guiqiang & Lu, Yashun & Zhao, Xudong, 2022. "The Gaussian non-uniform temperature field on PV cells - A unique solution for enhancing the performance of the PV/T module," Energy, Elsevier, vol. 250(C).
    12. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Zamani, Hosein & Moghiman, Mohammad & Kianifar, Ali, 2015. "Optimization of the parabolic mirror position in a solar cooker using the response surface method (RSM)," Renewable Energy, Elsevier, vol. 81(C), pages 753-759.
    14. Yadav, Pankaj & Tripathi, Brijesh & Rathod, Siddharth & Kumar, Manoj, 2013. "Real-time analysis of low-concentration photovoltaic systems: A review towards development of sustainable energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 812-823.
    15. Ustaoglu, Abid & Ozbey, Umut & Torlaklı, Hande, 2020. "Numerical investigation of concentrating photovoltaic/thermal (CPV/T) system using compound hyperbolic –trumpet, V-trough and compound parabolic concentrators," Renewable Energy, Elsevier, vol. 152(C), pages 1192-1208.
    16. Askari, Ighball Baniasad & Shahsavar, Amin & Jamei, Mehdi & Calise, Francesco & Karbasi, Masoud, 2022. "A parametric assessing and intelligent forecasting of the energy and exergy performances of a dish concentrating photovoltaic/thermal collector considering six different nanofluids and applying two me," Renewable Energy, Elsevier, vol. 193(C), pages 149-166.
    17. Mohan, Gowtham & Uday Kumar, N.T. & Pokhrel, Manoj Kumar & Martin, Andrew, 2016. "Experimental investigation of a novel solar thermal polygeneration plant in United Arab Emirates," Renewable Energy, Elsevier, vol. 91(C), pages 361-373.
    18. Calise, Francesco & Dentice d'Accadia, Massimo & Figaj, Rafal Damian & Vanoli, Laura, 2016. "A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization," Energy, Elsevier, vol. 95(C), pages 346-366.
    19. Renzi, M. & Egidi, L. & Comodi, G., 2015. "Performance analysis of two 3.5kWp CPV systems under real operating conditions," Applied Energy, Elsevier, vol. 160(C), pages 687-696.
    20. García-Domingo, B. & Aguilera, J. & de la Casa, J. & Fuentes, M., 2014. "Modelling the influence of atmospheric conditions on the outdoor real performance of a CPV (Concentrated Photovoltaic) module," Energy, Elsevier, vol. 70(C), pages 239-250.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:58:y:2013:i:c:p:398-403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.