IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2454-d170110.html
   My bibliography  Save this article

A Theoretical Study on Performance and Design Optimization of Linear Dielectric Compound Parabolic Concentrating Photovoltaic Systems

Author

Listed:
  • Guihua Li

    (Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming 650500, China)

  • Jingjing Tang

    (Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming 650500, China)

  • Runsheng Tang

    (Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming 650500, China)

Abstract

To investigate solar leakage and effects of the geometry of linear dielectric compound parabolic concentrator with a restricted exit angle (DCPC- θ a / θ e ) on the performance of DCPC- θ a / θ e -based photovoltaic systems (DCPV- θ a / θ e ), a three-dimensional radiation transfer model based on solar geometry and vector algebra is suggested. Analysis shows that the annual radiation loss due to leakage is sensitive to the geometry of DCPCs and tilt-angle adjustment strategy, and the optimal θ e,opt for minimizing annual leakage is the one that makes the incidence angle of solar rays on the plane wall equal to the critical incidence angle for total internal reflection at solar-noon in solstices and days when tilt-angle adjustment from site latitude is made for DCPV with the aperture’s tilt-angle being yearly fixed, and adjusted two and four times, respectively. It is found that annual radiation leakage is considerable small, for DCPVs with θ e < θ e,opt , almost all leaked radiation comes from sky diffuse radiation, whereas for θ e = 90°, most of leakage is attributed to direct sunlight. As compared to similar non-concentrating solar cells, more radiation arrives annually on solar cells of DCPV- θ a / θ e at small angles thanks to refraction of radiation on the aperture, hence, under same operation conditions, the annual average photovoltaic efficiency of solar cells for concentrated radiation is even higher. Analysis also shows that the power increase of DCPVs, being much less than the geometric concentration of DCPCs ( C t ), is mainly attributable to optical loss due to absorption of solar rays on the way to the solar cells, and the power loss due to leakage of radiation is not significant. From the point of annual electricity generation, for full DCPVs with a given θ a , DCPV- θ a /90 are favorable, and for truncated DCPVs with given θ a and C t , DCPVs with θ e < 90 are favorable; whereas from the point of contribution per unit volume of dielectric to the annual electricity generation, the situation is reversed.

Suggested Citation

  • Guihua Li & Jingjing Tang & Runsheng Tang, 2018. "A Theoretical Study on Performance and Design Optimization of Linear Dielectric Compound Parabolic Concentrating Photovoltaic Systems," Energies, MDPI, vol. 11(9), pages 1-30, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2454-:d:170110
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2454/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2454/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingjing Tang & Yamei Yu & Runsheng Tang, 2018. "A Three-Dimensional Radiation Transfer Model to Evaluate Performance of Compound Parabolic Concentrator-Based Photovoltaic Systems," Energies, MDPI, vol. 11(4), pages 1-24, April.
    2. Bahaidarah, Haitham M. & Tanweer, Bilal & Gandhidasan, P. & Ibrahim, Nasiru & Rehman, Shafiqur, 2014. "Experimental and numerical study on non-concentrating and symmetric unglazed compound parabolic photovoltaic concentration systems," Applied Energy, Elsevier, vol. 136(C), pages 527-536.
    3. Qiang Wang & Jinfu Wang & Runsheng Tang, 2016. "Design and Optical Performance of Compound Parabolic Solar Concentrators with Evacuated Tube as Receivers," Energies, MDPI, vol. 9(10), pages 1-16, October.
    4. Tang, Runsheng & Wu, Maogang & Yu, Yamei & Li, Ming, 2010. "Optical performance of fixed east–west aligned CPCs used in China," Renewable Energy, Elsevier, vol. 35(8), pages 1837-1841.
    5. Tang, Runsheng & Wang, Jinfu, 2013. "A note on multiple reflections of radiation within CPCs and its effect on calculations of energy collection," Renewable Energy, Elsevier, vol. 57(C), pages 490-496.
    6. Baig, Hasan & Sarmah, Nabin & Chemisana, Daniel & Rosell, Joan & Mallick, Tapas K., 2014. "Enhancing performance of a linear dielectric based concentrating photovoltaic system using a reflective film along the edge," Energy, Elsevier, vol. 73(C), pages 177-191.
    7. Li, Zhimin & Liu, Xinyue & Tang, Runsheng, 2010. "Optical performance of inclined south-north single-axis tracked solar panels," Energy, Elsevier, vol. 35(6), pages 2511-2516.
    8. Yu, Yamei & Liu, Nianyong & Tang, Runsheng, 2014. "Optical performance of CPCs for concentrating solar radiation on flat receivers with a restricted incidence angle," Renewable Energy, Elsevier, vol. 62(C), pages 679-688.
    9. Gang Pei & Guiqiang Li & Yuehong Su & Jie Ji & Saffa Riffat & Hongfei Zheng, 2012. "Preliminary Ray Tracing and Experimental Study on the Effect of Mirror Coating on the Optical Efficiency of a Solid Dielectric Compound Parabolic Concentrator," Energies, MDPI, vol. 5(9), pages 1-13, September.
    10. Guiqiang, Li & Gang, Pei & Yuehong, Su & Jie, Ji & Riffat, Saffa B., 2013. "Experiment and simulation study on the flux distribution of lens-walled compound parabolic concentrator compared with mirror compound parabolic concentrator," Energy, Elsevier, vol. 58(C), pages 398-403.
    11. Koussa, M. & Cheknane, A. & Hadji, S. & Haddadi, M. & Noureddine, S., 2011. "Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions," Applied Energy, Elsevier, vol. 88(5), pages 1756-1771, May.
    12. Sellami, Nazmi & Mallick, Tapas K., 2013. "Optical efficiency study of PV Crossed Compound Parabolic Concentrator," Applied Energy, Elsevier, vol. 102(C), pages 868-876.
    13. Baig, Hasan & Siviter, J. & Li, W. & Paul, M.C. & Montecucco, A. & Rolley, M.H. & Sweet, T.K.N. & Gao, M. & Mullen, P.A. & Fernandez, E.F. & Han, G. & Gregory, D.H. & Knox, A.R. & Mallick, Tapas, 2018. "Conceptual design and performance evaluation of a hybrid concentrating photovoltaic system in preparation for energy," Energy, Elsevier, vol. 147(C), pages 547-560.
    14. Khonkar, H.E.I. & Sayigh, A.A.M., 1994. "Raytrace for compound parabolic concentrator," Renewable Energy, Elsevier, vol. 5(1), pages 376-383.
    15. Muhammad-Sukki, Firdaus & Abu-Bakar, Siti Hawa & Ramirez-Iniguez, Roberto & McMeekin, Scott G. & Stewart, Brian G. & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abdul Rahim, Ruzairi, 2013. "Performance analysis of a mirror symmetrical dielectric totally internally reflecting concentrator for building integrated photovoltaic systems," Applied Energy, Elsevier, vol. 111(C), pages 288-299.
    16. Tang, Feng & Li, Guihua & Tang, Runsheng, 2016. "Design and optical performance of CPC based compound plane concentrators," Renewable Energy, Elsevier, vol. 95(C), pages 140-151.
    17. Baig, Hasan & Heasman, Keith C. & Mallick, Tapas K., 2012. "Non-uniform illumination in concentrating solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5890-5909.
    18. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guihua Li & Jingjing Tang & Runsheng Tang, 2019. "Performance and Design Optimization of a One-Axis Multiple Positions Sun-Tracked V-trough for Photovoltaic Applications," Energies, MDPI, vol. 12(6), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingjing Tang & Yamei Yu & Runsheng Tang, 2018. "A Three-Dimensional Radiation Transfer Model to Evaluate Performance of Compound Parabolic Concentrator-Based Photovoltaic Systems," Energies, MDPI, vol. 11(4), pages 1-24, April.
    2. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    3. Guihua Li & Yamei Yu & Runsheng Tang, 2020. "Performance and Design Optimization of Two-Mirror Composite Concentrating PV Systems," Energies, MDPI, vol. 13(11), pages 1-23, June.
    4. Shanks, Katie & Senthilarasu, S. & Mallick, Tapas K., 2016. "Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 394-407.
    5. Guihua Li & Jingjing Tang & Runsheng Tang, 2019. "Performance and Design Optimization of a One-Axis Multiple Positions Sun-Tracked V-trough for Photovoltaic Applications," Energies, MDPI, vol. 12(6), pages 1-23, March.
    6. Guiqiang, Li & Gang, Pei & Yuehong, Su & Yunyun, Wang & Jie, Ji, 2014. "Design and investigation of a novel lens-walled compound parabolic concentrator with air gap," Applied Energy, Elsevier, vol. 125(C), pages 21-27.
    7. Xu, Jintao & Chen, Fei & Xia, Entong & Gao, Chong & Deng, Chenggang, 2020. "An optimization design method and optical performance analysis on multi-sectioned compound parabolic concentrator with cylindrical absorber," Energy, Elsevier, vol. 197(C).
    8. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    9. Chandan, & Dey, Sumon & Iqbal, S.Md. & Reddy, K.S. & Pesala, Bala, 2021. "Numerical modeling and performance assessment of elongated compound parabolic concentrator based LCPVT system," Renewable Energy, Elsevier, vol. 167(C), pages 199-216.
    10. Abu-Bakar, Siti Hawa & Muhammad-Sukki, Firdaus & Freier, Daria & Ramirez-Iniguez, Roberto & Mallick, Tapas Kumar & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abubakar Mas'ud, Abdullahi & Md Yunus, No, 2015. "Optimisation of the performance of a novel rotationally asymmetrical optical concentrator design for building integrated photovoltaic system," Energy, Elsevier, vol. 90(P1), pages 1033-1045.
    11. Tang, Feng & Li, Guihua & Tang, Runsheng, 2016. "Design and optical performance of CPC based compound plane concentrators," Renewable Energy, Elsevier, vol. 95(C), pages 140-151.
    12. Liu, Huawei & Zhang, Jiazhen & Pei, Maoqing & Ju, Xinyu & Ju, Xing & Xu, Chao, 2024. "Optical, electrical, and thermal performance enhancement for a concentrating photovoltaic/thermal system using optimized polynomial compound parabolic concentrators," Applied Energy, Elsevier, vol. 358(C).
    13. Li, Yongcai & Jiao, Feng & Chen, Fei & Zhang, Zhenhua, 2021. "Design optimization and optical performance analysis on multi-sectioned compound parabolic concentrator with plane absorber," Renewable Energy, Elsevier, vol. 168(C), pages 913-926.
    14. Baig, Hasan & Siviter, J. & Li, W. & Paul, M.C. & Montecucco, A. & Rolley, M.H. & Sweet, T.K.N. & Gao, M. & Mullen, P.A. & Fernandez, E.F. & Han, G. & Gregory, D.H. & Knox, A.R. & Mallick, Tapas, 2018. "Conceptual design and performance evaluation of a hybrid concentrating photovoltaic system in preparation for energy," Energy, Elsevier, vol. 147(C), pages 547-560.
    15. Bahaidarah, Haitham M. & Tanweer, Bilal & Gandhidasan, P. & Ibrahim, Nasiru & Rehman, Shafiqur, 2014. "Experimental and numerical study on non-concentrating and symmetric unglazed compound parabolic photovoltaic concentration systems," Applied Energy, Elsevier, vol. 136(C), pages 527-536.
    16. Daria Freier & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Roberto Ramirez-Iniguez & Abu Bakar Munir & Siti Hajar Mohd Yasin & Nurul Aini Bani & Abdullahi Abubakar Mas’ud & Jorge Alfredo Ardila-Rey, 2018. "Annual Prediction Output of an RADTIRC-PV Module," Energies, MDPI, vol. 11(3), pages 1-20, March.
    17. Yu, Yamei & Liu, Nianyong & Tang, Runsheng, 2014. "Optical performance of CPCs for concentrating solar radiation on flat receivers with a restricted incidence angle," Renewable Energy, Elsevier, vol. 62(C), pages 679-688.
    18. Zhang, Heng & Chen, Haiping & Han, Yuchen & Liu, Haowen & Li, Mingjie, 2017. "Experimental and simulation studies on a novel compound parabolic concentrator," Renewable Energy, Elsevier, vol. 113(C), pages 784-794.
    19. Santosh, R. & Kumaresan, G. & Pon Pavithiran, C.K. & Mathu, P. & Velraj, R., 2023. "Effect of geometric variation and solar flux distribution on performance enhancement of absorber tube thermal characteristics for compound parabolic collectors," Renewable Energy, Elsevier, vol. 210(C), pages 671-686.
    20. Qiang Wang & Jinfu Wang & Runsheng Tang, 2016. "Design and Optical Performance of Compound Parabolic Solar Concentrators with Evacuated Tube as Receivers," Energies, MDPI, vol. 9(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2454-:d:170110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.