IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v57y2013icp484-494.html
   My bibliography  Save this article

Calibrating a combined energy systems analysis and controller design method with empirical data

Author

Listed:
  • Murphy, Gavin Bruce
  • Counsell, John
  • Allison, John
  • Brindley, Joseph

Abstract

The drive towards low carbon constructions has seen buildings increasingly utilise many different energy systems simultaneously to control the human comfort of the indoor environment; such as ventilation with heat recovery, various heating solutions and applications of renewable energy. This paper describes a dynamic modelling and simulation method (IDEAS – Inverse Dynamics based Energy Assessment and Simulation) for analysing the energy utilisation of a building and its complex servicing systems. The IDEAS case study presented in this paper is based upon small perturbation theory and can be used for the analysis of the performance of complex energy systems and also for the design of smart control systems. This paper presents a process of how any dynamic model can be calibrated against a more empirical based data model, in this case the UK Government's SAP (Standard Assessment Procedure). The research targets of this work are building simulation experts for analysing the energy use of a building and also control engineers to assist in the design of smart control systems for dwellings. The calibration process presented is transferable and has applications for simulation experts to assist in calibrating any dynamic building simulation method with an empirical based method.

Suggested Citation

  • Murphy, Gavin Bruce & Counsell, John & Allison, John & Brindley, Joseph, 2013. "Calibrating a combined energy systems analysis and controller design method with empirical data," Energy, Elsevier, vol. 57(C), pages 484-494.
  • Handle: RePEc:eee:energy:v:57:y:2013:i:c:p:484-494
    DOI: 10.1016/j.energy.2013.06.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213005136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.06.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Virulkar, Vasudeo & Aware, Mohan & Kolhe, Mohan, 2011. "Integrated battery controller for distributed energy system," Energy, Elsevier, vol. 36(5), pages 2392-2398.
    2. González-Bustamante, J.A. & Sala, J.M. & López-González, L.M. & Míguez, J.L. & Flores, I., 2007. "Modelling and dynamic simulation of processes with ‘MATLAB’. An application of a natural gas installation in a power plant," Energy, Elsevier, vol. 32(7), pages 1271-1282.
    3. Tashtoush, Bourhan & Molhim, M. & Al-Rousan, M., 2005. "Dynamic model of an HVAC system for control analysis," Energy, Elsevier, vol. 30(10), pages 1729-1745.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michalak, Piotr, 2014. "The simple hourly method of EN ISO 13790 standard in Matlab/Simulink: A comparative study for the climatic conditions of Poland," Energy, Elsevier, vol. 75(C), pages 568-578.
    2. Garrett, Aaron & New, Joshua, 2015. "Scalable tuning of building models to hourly data," Energy, Elsevier, vol. 84(C), pages 493-502.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    2. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    3. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    4. Afram, Abdul & Janabi-Sharifi, Farrokh, 2015. "Gray-box modeling and validation of residential HVAC system for control system design," Applied Energy, Elsevier, vol. 137(C), pages 134-150.
    5. Liu, Xiangfei & Ren, Mifeng & Yang, Zhile & Yan, Gaowei & Guo, Yuanjun & Cheng, Lan & Wu, Chengke, 2022. "A multi-step predictive deep reinforcement learning algorithm for HVAC control systems in smart buildings," Energy, Elsevier, vol. 259(C).
    6. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    7. Farinaz Behrooz & Norman Mariun & Mohammad Hamiruce Marhaban & Mohd Amran Mohd Radzi & Abdul Rahman Ramli, 2017. "A Design of a Hybrid Non-Linear Control Algorithm," Energies, MDPI, vol. 10(11), pages 1-32, November.
    8. Yang Yuan & Neng Zhu & Haizhu Zhou & Hai Wang, 2021. "A New Model Predictive Control Method for Eliminating Hydraulic Oscillation and Dynamic Hydraulic Imbalance in a Complex Chilled Water System," Energies, MDPI, vol. 14(12), pages 1-23, June.
    9. Mossolly, M. & Ghali, K. & Ghaddar, N., 2009. "Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm," Energy, Elsevier, vol. 34(1), pages 58-66.
    10. Tareen, Wajahat Ullah & Mekhilef, Saad, 2016. "Transformer-less 3P3W SAPF (three-phase three-wire shunt active power filter) with line-interactive UPS (uninterruptible power supply) and battery energy storage stage," Energy, Elsevier, vol. 109(C), pages 525-536.
    11. Kusiak, Andrew & Li, Mingyang, 2010. "Reheat optimization of the variable-air-volume box," Energy, Elsevier, vol. 35(5), pages 1997-2005.
    12. Han, H.J. & Jeon, Y.I. & Lim, S.H. & Kim, W.W. & Chen, K., 2010. "New developments in illumination, heating and cooling technologies for energy-efficient buildings," Energy, Elsevier, vol. 35(6), pages 2647-2653.
    13. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    14. Kusiak, Andrew & Tang, Fan & Xu, Guanglin, 2011. "Multi-objective optimization of HVAC system with an evolutionary computation algorithm," Energy, Elsevier, vol. 36(5), pages 2440-2449.
    15. Gomes, A. & Antunes, C. Henggeler & Martinho, J., 2013. "A physically-based model for simulating inverter type air conditioners/heat pumps," Energy, Elsevier, vol. 50(C), pages 110-119.
    16. Homod, Raad Z., 2014. "Assessment regarding energy saving and decoupling for different AHU (air handling unit) and control strategies in the hot-humid climatic region of Iraq," Energy, Elsevier, vol. 74(C), pages 762-774.
    17. Ali Hamza & Muhammad Uneeb & Iftikhar Ahmad & Komal Saleem & Zunaib Ali, 2023. "Variable Structure-Based Control for Dynamic Temperature Setpoint Regulation in Hospital Extreme Healthcare Zones," Energies, MDPI, vol. 16(10), pages 1-27, May.
    18. Yin, Cong & Gao, Yan & Guo, Shaoyun & Tang, Hao, 2014. "A coupled three dimensional model of vanadium redox flow battery for flow field designs," Energy, Elsevier, vol. 74(C), pages 886-895.
    19. Baldi, Simone & Yuan, Shuai & Endel, Petr & Holub, Ondrej, 2016. "Dual estimation: Constructing building energy models from data sampled at low rate," Applied Energy, Elsevier, vol. 169(C), pages 81-92.
    20. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2022. "Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives," Energies, MDPI, vol. 15(4), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:57:y:2013:i:c:p:484-494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.