IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics036054422400519x.html
   My bibliography  Save this article

Development of a smart powering system with ammonia fuel cells and internal combustion engine for submarines

Author

Listed:
  • Akgun, Ibrahim
  • Dincer, Ibrahim

Abstract

The current limitations of hydrogen storage technology in submarines have prompted the need for alternative solutions. One promising option is the use of ammonia, a readily stored fuel. This paper presents an innovative, integrated system that runs on ammonia and does not rely on atmospheric air. The system combines Direct Ammonia Fuel Cell (DAFC) stack and an Internal Combustion Engine (ICE) technology to generate power, freshwater, and cooling. The system also recovers waste heat and utilizes it efficiently to produce these useful outputs. The study further aims to assess the system's performance using energy and exergy analysis methods and to conduct a parametric analysis to examine the impact of parameters and operating conditions on system efficiency. In the developed integrated system, the quantities of net power produced, cooling provided, and freshwater flow rate produced under specified conditions are 4069 kW, 589.5 kW, and 1.269 kg/s, respectively. Its energy and exergy efficiency were found to be 38.58% and 44.77%, respectively. The analysis study also obtains that increasing the ammonia flow rate supplied to the ICE and the steam flow rate provided to the turbine, as well as the reference temperature, could potentially improve both energetic and exergetic efficiencies.

Suggested Citation

  • Akgun, Ibrahim & Dincer, Ibrahim, 2024. "Development of a smart powering system with ammonia fuel cells and internal combustion engine for submarines," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s036054422400519x
    DOI: 10.1016/j.energy.2024.130747
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422400519X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghosh, P.C. & Vasudeva, U., 2011. "Analysis of 3000T class submarines equipped with polymer electrolyte fuel cells," Energy, Elsevier, vol. 36(5), pages 3138-3147.
    2. Ezzat, M.F. & Dincer, I., 2020. "Energy and exergy analyses of a novel ammonia combined power plant operating with gas turbine and solid oxide fuel cell systems," Energy, Elsevier, vol. 194(C).
    3. Leo, T.J. & Durango, J.A. & Navarro, E., 2010. "Exergy analysis of PEM fuel cells for marine applications," Energy, Elsevier, vol. 35(2), pages 1164-1171.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singdeo, Debanand & Dey, Tapobrata & Ghosh, Prakash C., 2011. "Modelling of start-up time for high temperature polymer electrolyte fuel cells," Energy, Elsevier, vol. 36(10), pages 6081-6089.
    2. Yan, Peijian & Tian, Pengfei & Cai, Cheng & Zhou, Shenghu & Yu, Xinhai & Zhao, Shuangliang & Tu, Shan-Tung & Deng, Chengwei & Sun, Yi, 2020. "Antioxidative and stable PdZn/ZnO/Al2O3 catalyst coatings concerning methanol steam reforming for fuel cell-powered vehicles," Applied Energy, Elsevier, vol. 268(C).
    3. Al-Hamed, Khaled H.M. & Dincer, Ibrahim, 2021. "A novel ammonia solid oxide fuel cell-based powering system with on-board hydrogen production for clean locomotives," Energy, Elsevier, vol. 220(C).
    4. Dong, Weijie & He, Guoqing & Cui, Quansheng & Sun, Wenwen & Hu, Zhenlong & Ahli raad, Erfan, 2022. "Self-scheduling of a novel hybrid GTSOFC unit in day-ahead energy and spinning reserve markets within ancillary services using a novel energy storage," Energy, Elsevier, vol. 239(PE).
    5. Zhang, Nan & Lu, Yiji & Kadam, Sambhaji & Yu, Zhibin, 2023. "A fuel cell range extender integrating with heat pump for cabin heat and power generation," Applied Energy, Elsevier, vol. 348(C).
    6. Yuan, Zhenyu & Zhang, Yufeng & Fu, Wenting & Li, Zipeng & Liu, Xiaowei, 2013. "Investigation of a small-volume direct methanol fuel cell stack for portable applications," Energy, Elsevier, vol. 51(C), pages 462-467.
    7. Sun, Zhe & Wang, Ning & Bi, Yunrui & Srinivasan, Dipti, 2015. "Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm," Energy, Elsevier, vol. 90(P2), pages 1334-1341.
    8. Erika Michela Dematteis & Jussara Barale & Marta Corno & Alessandro Sciullo & Marcello Baricco & Paola Rizzi, 2021. "Solid-State Hydrogen Storage Systems and the Relevance of a Gender Perspective," Energies, MDPI, vol. 14(19), pages 1-26, September.
    9. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    10. Seung-Kyo Jung & Won-Sim Cha & Yeong-In Park & Shin-Hyung Kim & Jungho Choi, 2020. "Conceptual Design Development of a Fuel-Reforming System for Fuel Cells in Underwater Vehicles," Energies, MDPI, vol. 13(8), pages 1-15, April.
    11. Zhao, Liang & Zhang, Jiulei & Wang, Xiu & Feng, Junsheng & Dong, Hui & Kong, Xiangwei, 2020. "Dynamic exergy analysis of a novel LNG cold energy utilization system combined with cold, heat and power," Energy, Elsevier, vol. 212(C).
    12. Salemme, Lucia & Menna, Laura & Simeone, Marino, 2013. "Calculation of the energy efficiency of fuel processor – PEM (proton exchange membrane) fuel cell systems from fuel elementar composition and heating value," Energy, Elsevier, vol. 57(C), pages 368-374.
    13. Iranzo, Alfredo & Navas, Sergio J. & Rosa, Felipe & Berber, Mohamed R., 2021. "Determination of time constants of diffusion and electrochemical processes in Polymer Electrolyte Membrane Fuel Cells," Energy, Elsevier, vol. 221(C).
    14. Iliya Krastev Iliev & Antonina Andreevna Filimonova & Andrey Alexandrovich Chichirov & Natalia Dmitrievna Chichirova & Alexander Vadimovich Pechenkin & Artem Sergeevich Vinogradov, 2023. "Theoretical and Experimental Studies of Combined Heat and Power Systems with SOFCs," Energies, MDPI, vol. 16(4), pages 1-17, February.
    15. Adam Polak, 2020. "Simulation of Fuzzy Control of Oxygen Flow in PEM Fuel Cells," Energies, MDPI, vol. 13(9), pages 1-26, May.
    16. Wang, Shengnan & Li, Yunhua & Li, Yun-Ze & Peng, Xing & Mao, Yufeng, 2018. "Exergy based parametric analysis of a cooling and power co-generation system for the life support system of extravehicular spacesuits," Renewable Energy, Elsevier, vol. 115(C), pages 1209-1219.
    17. S. M. Seyed Mahmoudi & Niloufar Sarabchi & Mortaza Yari & Marc A. Rosen, 2019. "Exergy and Exergoeconomic Analyses of a Combined Power Producing System including a Proton Exchange Membrane Fuel Cell and an Organic Rankine Cycle," Sustainability, MDPI, vol. 11(12), pages 1-25, June.
    18. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.
    19. Meng, Kai & Zhou, Haoran & Chen, Ben & Tu, Zhengkai, 2021. "Dynamic current cycles effect on the degradation characteristic of a H2/O2 proton exchange membrane fuel cell," Energy, Elsevier, vol. 224(C).
    20. Han, Gwangwoo & Kwon, YongKeun & Kim, Joong Bae & Lee, Sanghun & Bae, Joongmyeon & Cho, EunAe & Lee, Bong Jae & Cho, Sungbaek & Park, Jinwoo, 2020. "Development of a high-energy-density portable/mobile hydrogen energy storage system incorporating an electrolyzer, a metal hydride and a fuel cell," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s036054422400519x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.