IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v46y2012i1p493-521.html
   My bibliography  Save this article

Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants

Author

Listed:
  • Myat, Aung
  • Thu, Kyaw
  • Kim, Young Deuk
  • Saha, Bidyut Baran
  • Choon Ng, Kim

Abstract

We present a practical tool that employs entropy generation minimization (EGM) approach for an in-depth performance evaluation of a co-generation plant with a temperature-cascaded concept. Co-generation plant produces useful effect production sequentially, i.e., (i) electricity from the micro-turbines, (ii) low pressure steam at 250 °C or about 8–10 bars, (iii) cooling capacity of 4 refrigeration tones (Rtons) and (iv) dehumidification of outdoor air for air conditioned space. The main objective is to configure the most efficient configuration of producing power and heat. We employed entropy generation minimization (EGM) which reflects to minimize the dissipative losses and maximize the cycle efficiency of the individual thermally activated systems. The minimization of dissipative losses or EGM is performed in two steps namely, (i) adjusting heat source temperatures for the heat-fired cycles and (ii) the use of Genetic Algorithm (GA), to seek out the sensitivity of heat transfer areas, flow rates of working fluids, inlet temperatures of heat sources and coolant, etc., over the anticipated range of operation to achieve maximum efficiency. With EGM equipped with GA, we verified that the local minimization of entropy generation individually at each of the heat-activated processes would lead to the maximum efficiency of the system.

Suggested Citation

  • Myat, Aung & Thu, Kyaw & Kim, Young Deuk & Saha, Bidyut Baran & Choon Ng, Kim, 2012. "Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants," Energy, Elsevier, vol. 46(1), pages 493-521.
  • Handle: RePEc:eee:energy:v:46:y:2012:i:1:p:493-521
    DOI: 10.1016/j.energy.2012.07.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212006111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.07.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akisawa, Atsushi & Miyazaki, Takahiko & Kashiwagi, Takao, 2010. "Theoretical analysis of the optimal configuration of co-generation systems and competitiveness of heating/cooling technologies," Energy, Elsevier, vol. 35(10), pages 4071-4078.
    2. Cuviella-Suárez, Carlos & Colmenar-Santos, Antonio & Castro-Gil, Manuel, 2012. "Tri-generation system to couple production to demand in a combined cycle," Energy, Elsevier, vol. 40(1), pages 271-290.
    3. Ho, J.C. & Chua, K.J. & Chou, S.K., 2004. "Performance study of a microturbine system for cogeneration application," Renewable Energy, Elsevier, vol. 29(7), pages 1121-1133.
    4. Ahmadi, Pouria & Dincer, Ibrahim, 2010. "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, Elsevier, vol. 35(12), pages 5161-5172.
    5. Balestieri, JoséAntonio Perrella & De Barros Correia, Paulo, 1997. "Multiobjective linear model for pre-feasibility design of cogeneration systems," Energy, Elsevier, vol. 22(5), pages 537-549.
    6. Padilla, Ricardo Vasquez & Demirkaya, Gökmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2010. "Analysis of power and cooling cogeneration using ammonia-water mixture," Energy, Elsevier, vol. 35(12), pages 4649-4657.
    7. Wang, F.J. & Chiou, J.S. & Wu, P.C., 2007. "Economic feasibility of waste heat to power conversion," Applied Energy, Elsevier, vol. 84(4), pages 442-454, April.
    8. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    9. Luo, Chending & Zhang, Na & Lior, Noam & Lin, Hu, 2011. "Proposal and analysis of a dual-purpose system integrating a chemically recuperated gas turbine cycle with thermal seawater desalination," Energy, Elsevier, vol. 36(6), pages 3791-3803.
    10. Zhao, X.L. & Fu, L. & Zhang, S.G. & Jiang, Y. & Li, H., 2010. "Performance improvement of a 70 kWe natural gas combined heat and power (CHP) system," Energy, Elsevier, vol. 35(4), pages 1848-1853.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amit Kumar & Avadhesh Yadav, 2017. "Experimental investigation of solar-powered desiccant cooling system by using composite desiccant “CaCl2/jute”," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1279-1292, August.
    2. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2016. "Energy and entropy analyses of hydrate dissociation in different scales of hydrate simulator," Energy, Elsevier, vol. 102(C), pages 176-186.
    3. Privat, Romain & Qian, Jun-Wei & Alonso, Dominique & Jaubert, Jean-Noël, 2013. "Quest for an efficient binary working mixture for an absorption-demixing heat transformer," Energy, Elsevier, vol. 55(C), pages 594-609.
    4. Chen, W.D. & Chua, K.J., 2020. "Parameter analysis and energy optimization of a four-bed, two-evaporator adsorption system," Applied Energy, Elsevier, vol. 265(C).
    5. Asinari, Pietro & Chiavazzo, Eliodoro, 2014. "The notion of energy through multiple scales: From a molecular level to fluid flows and beyond," Energy, Elsevier, vol. 68(C), pages 870-876.
    6. Torabi, Mohsen & Zhang, Kaili, 2014. "Classical entropy generation analysis in cooled homogenous and functionally graded material slabs with variation of internal heat generation with temperature, and convective–radiative boundary conditi," Energy, Elsevier, vol. 65(C), pages 387-397.
    7. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2014. "Performance analysis of turbulent convection heat transfer of Al2O3 water-nanofluid in circular tubes at constant wall temperature," Energy, Elsevier, vol. 77(C), pages 403-413.
    8. Kotani, Yui & Kansha, Yasuki & Tsutsumi, Atsushi, 2013. "Conceptual design of an active magnetic regenerative heat circulator based on self-heat recuperation technology," Energy, Elsevier, vol. 55(C), pages 127-133.
    9. Thu, Kyaw & Saha, Bidyut Baran & Chua, Kian Jon & Bui, Thuan Duc, 2016. "Thermodynamic analysis on the part-load performance of a microturbine system for micro/mini-CHP applications," Applied Energy, Elsevier, vol. 178(C), pages 600-608.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi, P. & Fakhari, I. & Rosen, Marc A., 2022. "A comprehensive approach for tri-objective optimization of a novel advanced energy system with gas turbine prime mover, ejector cooling system and multi-effect desalination," Energy, Elsevier, vol. 254(PC).
    2. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    3. Bahlouli, K. & Khoshbakhti Saray, R. & Sarabchi, N., 2015. "Parametric investigation and thermo-economic multi-objective optimization of an ammonia–water power/cooling cycle coupled with an HCCI (homogeneous charge compression ignition) engine," Energy, Elsevier, vol. 86(C), pages 672-684.
    4. Diaz-Mendez, S.E. & Sierra-Grajeda, J.M.T. & Hernandez-Guerrero, A. & Rodriguez-Lelis, J.M., 2013. "Entropy generation as an environmental impact indicator and a sample application to freshwater ecosystems eutrophication," Energy, Elsevier, vol. 61(C), pages 234-239.
    5. Pirmohamadi, Alireza & Ghazi, Mehrangiz & Nikian, Mohammad, 2019. "Optimal design of cogeneration systems in total site using exergy approach," Energy, Elsevier, vol. 166(C), pages 1291-1302.
    6. Rachtan, W. & Malinowski, L., 2013. "An approximate expression for part-load performance of a microturbine combined heat and power system heat recovery unit," Energy, Elsevier, vol. 51(C), pages 146-153.
    7. Boyaghchi, Fateme Ahmadi & Molaie, Hanieh, 2015. "Advanced exergy and environmental analyses and multi objective optimization of a real combined cycle power plant with supplementary firing using evolutionary algorithm," Energy, Elsevier, vol. 93(P2), pages 2267-2279.
    8. Şöhret, Yasin & Açıkkalp, Emin & Hepbasli, Arif & Karakoc, T. Hikmet, 2015. "Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts," Energy, Elsevier, vol. 90(P2), pages 1219-1228.
    9. Ligang Wang & Yongping Yang & Changqing Dong & Zhiping Yang & Gang Xu & Lingnan Wu, 2012. "Exergoeconomic Evaluation of a Modern Ultra-Supercritical Power Plant," Energies, MDPI, vol. 5(9), pages 1-17, September.
    10. Han, Xiaoqu & Liu, Ming & Wu, Kaili & Chen, Weixiong & Xiao, Feng & Yan, Junjie, 2016. "Exergy analysis of the flue gas pre-dried lignite-fired power system based on the boiler with open pulverizing system," Energy, Elsevier, vol. 106(C), pages 285-300.
    11. Atılgan, Ramazan & Turan, Önder & Altuntaş, Önder & Aydın, Hakan & Synylo, Kateryna, 2013. "Environmental impact assessment of a turboprop engine with the aid of exergy," Energy, Elsevier, vol. 58(C), pages 664-671.
    12. Naserabad, S. Nikbakht & Mehrpanahi, A. & Ahmadi, G., 2018. "Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications," Energy, Elsevier, vol. 159(C), pages 277-293.
    13. Ashkan Abdalisousan & Maryam Fani & Bijan Farhanieh & Majid Abbaspour, 2014. "Effect of Decision Variables in the Steam Section for the Exergoeconomic Analysis of TCCGT Power Plant: A Case Study," Energy & Environment, , vol. 25(8), pages 1381-1404, December.
    14. Aydin, Hakan, 2013. "Exergetic sustainability analysis of LM6000 gas turbine power plant with steam cycle," Energy, Elsevier, vol. 57(C), pages 766-774.
    15. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Yang, Youngmin, 2016. "Comparative assessment of Organic Rankine Cycle integration for low temperature geothermal heat source applications," Energy, Elsevier, vol. 102(C), pages 473-490.
    16. Sadeghian, H.R. & Ardehali, M.M., 2016. "A novel approach for optimal economic dispatch scheduling of integrated combined heat and power systems for maximum economic profit and minimum environmental emissions based on Benders decomposition," Energy, Elsevier, vol. 102(C), pages 10-23.
    17. Mohammadkhani, Farzad & Ranjbar, Faramarz & Yari, Mortaza, 2015. "A comparative study on the ammonia–water based bottoming power cycles: The exergoeconomic viewpoint," Energy, Elsevier, vol. 87(C), pages 425-434.
    18. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomics of power utilities: Air-cooled gas turbine cycle and combined cycle configurations," Energy, Elsevier, vol. 139(C), pages 42-51.
    19. Du, S. & Wang, R.Z. & Xia, Z.Z., 2015. "Graphical analysis on internal heat recovery of a single stage ammonia–water absorption refrigeration system," Energy, Elsevier, vol. 80(C), pages 687-694.
    20. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:46:y:2012:i:1:p:493-521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.