IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i10p4071-4078.html
   My bibliography  Save this article

Theoretical analysis of the optimal configuration of co-generation systems and competitiveness of heating/cooling technologies

Author

Listed:
  • Akisawa, Atsushi
  • Miyazaki, Takahiko
  • Kashiwagi, Takao

Abstract

This study aims at exploiting optimal configurations of technologies combined with co-generation theoretically based on a linear optimization model. With the objective function defining primary energy consumption to be minimized, optimal solutions are derived analytically. They describe the technological configurations as well as associated conditions depending on their final energy demand. An interesting finding is that the essential parameters to determine the configurations are heat, cooling and steam demands normalized by power demand. The optimal solutions are also applied to investigate the competitiveness of co-generation related technologies. The optimal solutions yield critical conditions theoretically, which is useful to understand the priority of the technologies. A sensitivity analysis numerically indicates that absorption chillers can be superior to compression chillers even though the former has lower COP than the latter. Actual data of various types of co-generation are also examined to show the practical competitiveness.

Suggested Citation

  • Akisawa, Atsushi & Miyazaki, Takahiko & Kashiwagi, Takao, 2010. "Theoretical analysis of the optimal configuration of co-generation systems and competitiveness of heating/cooling technologies," Energy, Elsevier, vol. 35(10), pages 4071-4078.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:10:p:4071-4078
    DOI: 10.1016/j.energy.2010.06.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210003361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.06.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chicco, Gianfranco & Mancarella, Pierluigi, 2008. "Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: Models and indicators," Energy, Elsevier, vol. 33(3), pages 410-417.
    2. Ruan, Yingjun & Liu, Qingrong & Zhou, Weiguo & Firestone, Ryan & Gao, Weijun & Watanabe, Toshiyuki, 2009. "Optimal option of distributed generation technologies for various commercial buildings," Applied Energy, Elsevier, vol. 86(9), pages 1641-1653, September.
    3. Fumo, Nelson & Mago, Pedro J. & Chamra, Louay M., 2009. "Analysis of cooling, heating, and power systems based on site energy consumption," Applied Energy, Elsevier, vol. 86(6), pages 928-932, June.
    4. Wu, Y. June & Rosen, Marc A., 1999. "Assessing and optimizing the economic and environmental impacts of cogeneration/district energy systems using an energy equilibrium model," Applied Energy, Elsevier, vol. 62(3), pages 141-154, March.
    5. Cortés, E. & Rivera, W., 2010. "Exergetic and exergoeconomic optimization of a cogeneration pulp and paper mill plant including the use of a heat transformer," Energy, Elsevier, vol. 35(3), pages 1289-1299.
    6. Mancarella, Pierluigi & Chicco, Gianfranco, 2008. "Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part II: Analysis techniques and application cases," Energy, Elsevier, vol. 33(3), pages 418-430.
    7. Thorin, Eva & Brand, Heike & Weber, Christoph, 2005. "Long-term optimization of cogeneration systems in a competitive market environment," Applied Energy, Elsevier, vol. 81(2), pages 152-169, June.
    8. Sayyaadi, Hoseyn, 2009. "Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system," Applied Energy, Elsevier, vol. 86(6), pages 867-879, June.
    9. Verbruggen, Aviel & Wiggin, Michael & Dufait, Nadine & Martens, Adwin, 1992. "The impact of CHP generation on CO2 emissions," Energy Policy, Elsevier, vol. 20(12), pages 1207-1214, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Myat, Aung & Thu, Kyaw & Kim, Young Deuk & Saha, Bidyut Baran & Choon Ng, Kim, 2012. "Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants," Energy, Elsevier, vol. 46(1), pages 493-521.
    2. Keirstead, James & Samsatli, Nouri & Shah, Nilay & Weber, Céline, 2012. "The impact of CHP (combined heat and power) planning restrictions on the efficiency of urban energy systems," Energy, Elsevier, vol. 41(1), pages 93-103.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Particle swarm optimization for redundant building cooling heating and power system," Applied Energy, Elsevier, vol. 87(12), pages 3668-3679, December.
    2. Cho, Heejin & Mago, Pedro J. & Luck, Rogelio & Chamra, Louay M., 2009. "Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme," Applied Energy, Elsevier, vol. 86(12), pages 2540-2549, December.
    3. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
    4. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    5. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2011. "Influence analysis of building types and climate zones on energetic, economic and environmental performances of BCHP systems," Applied Energy, Elsevier, vol. 88(9), pages 3097-3112.
    6. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    7. Caresana, Flavio & Brandoni, Caterina & Feliciotti, Petro & Bartolini, Carlo Maria, 2011. "Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator," Applied Energy, Elsevier, vol. 88(3), pages 659-671, March.
    8. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Xutao & Zhang, Chunfa, 2011. "Sensitivity analysis of optimal model on building cooling heating and power system," Applied Energy, Elsevier, vol. 88(12), pages 5143-5152.
    9. Monica Costea & Michel Feidt, 2022. "A Review Regarding Combined Heat and Power Production and Extensions: Thermodynamic Modelling and Environmental Impact," Energies, MDPI, vol. 15(23), pages 1-25, November.
    10. Smith, Amanda D. & Mago, Pedro J. & Fumo, Nelson, 2011. "Emissions spark spread and primary energy spark spread – Environmental and energy screening parameters for combined heating and power systems," Applied Energy, Elsevier, vol. 88(11), pages 3891-3897.
    11. Miao Li & Hailin Mu & Huanan Li, 2013. "Analysis and Assessments of Combined Cooling, Heating and Power Systems in Various Operation Modes for a Building in China, Dalian," Energies, MDPI, vol. 6(5), pages 1-22, May.
    12. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
    13. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2011. "Industrial combined heat and power (CHP) planning: Development of a methodology and application in Greece," Applied Energy, Elsevier, vol. 88(5), pages 1519-1531, May.
    14. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa, 2010. "Optimization of capacity and operation for CCHP system by genetic algorithm," Applied Energy, Elsevier, vol. 87(4), pages 1325-1335, April.
    15. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun & Wu, Qiong, 2010. "Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 87(12), pages 3642-3651, December.
    16. Moradi, Mohammad H. & Hajinazari, Mehdi & Jamasb, Shahriar & Paripour, Mahmoud, 2013. "An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming," Energy, Elsevier, vol. 49(C), pages 86-101.
    17. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    18. Daniel Cardoso & Daniel Nunes & João Faria & Paulo Fael & Pedro D. Gaspar, 2023. "Intelligent Micro-Cogeneration Systems for Residential Grids: A Sustainable Solution for Efficient Energy Management," Energies, MDPI, vol. 16(13), pages 1-21, July.
    19. Luigi Maffei & Antonio Ciervo & Achille Perrotta & Massimiliano Masullo & Antonio Rosato, 2023. "Innovative Energy-Efficient Prefabricated Movable Buildings for Smart/Co-Working: Performance Assessment upon Varying Building Configurations," Sustainability, MDPI, vol. 15(12), pages 1-37, June.
    20. Marco F. Torchio, 2013. "Energy-Exergy, Environmental and Economic Criteria in Combined Heat and Power (CHP) Plants: Indexes for the Evaluation of the Cogeneration Potential," Energies, MDPI, vol. 6(5), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:10:p:4071-4078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.