IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v22y1997i5p537-549.html
   My bibliography  Save this article

Multiobjective linear model for pre-feasibility design of cogeneration systems

Author

Listed:
  • Balestieri, JoséAntonio Perrella
  • De Barros Correia, Paulo

Abstract

This article deals with some methodologies for economic and technical evaluations of cogeneration projects proposed by several authors. A discussion on design philosophy applied to thermal power plants leads to the decision problem of a conflicting, multiobjective formulation that includes the most important parameters. This model is formulated to help decision makers and designers in choosing compromise values for included parameters.

Suggested Citation

  • Balestieri, JoséAntonio Perrella & De Barros Correia, Paulo, 1997. "Multiobjective linear model for pre-feasibility design of cogeneration systems," Energy, Elsevier, vol. 22(5), pages 537-549.
  • Handle: RePEc:eee:energy:v:22:y:1997:i:5:p:537-549
    DOI: 10.1016/S0360-5442(96)00151-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054429600151X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(96)00151-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Myat, Aung & Thu, Kyaw & Kim, Young Deuk & Saha, Bidyut Baran & Choon Ng, Kim, 2012. "Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants," Energy, Elsevier, vol. 46(1), pages 493-521.
    2. de Holanda, Marcelo R. & Balestieri, José A. Perrella, 1999. "Cogeneration in a solid-wastes power-station: a case-study," Applied Energy, Elsevier, vol. 63(2), pages 125-139, June.
    3. Matelli, José Alexandre & Goebel, Kai, 2018. "Conceptual design of cogeneration plants under a resilient design perspective: Resilience metrics and case study," Applied Energy, Elsevier, vol. 215(C), pages 736-750.
    4. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Decision analysis in energy and environmental modeling: An update," Energy, Elsevier, vol. 31(14), pages 2604-2622.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:22:y:1997:i:5:p:537-549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.