IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v45y2012i1p489-496.html
   My bibliography  Save this article

Thermal performance and pressure drop in a ceramic heat exchanger evaluated using CFD simulations

Author

Listed:
  • Monteiro, Deiglys Borges
  • de Mello, Paulo Eduardo Batista

Abstract

There is one potential demand for heat exchangers capable of supporting high temperatures, typically higher than 800 °C, for use in thermal power plants. These heat exchangers could be used in the implementation of EFGT (Externally Fired Gas Turbines) cycles. To support these working conditions, during long periods of time, the heat exchanger should be constructed with adequate materials. Ceramics has been considered by many previous works as a choice. This work presents the results obtained with CFD simulations of one plate-fin ceramic heat exchanger. Correlations for the Colburn and friction factors, for a range of Reynolds number between 500 and 1500, are evaluated from the numerical results obtained with CFD. These correlations may be used for the thermal design of ceramic heat exchangers. One validation procedure is conducted comparing the simulation results with experimental data for a compact heat exchanger of similar configuration.

Suggested Citation

  • Monteiro, Deiglys Borges & de Mello, Paulo Eduardo Batista, 2012. "Thermal performance and pressure drop in a ceramic heat exchanger evaluated using CFD simulations," Energy, Elsevier, vol. 45(1), pages 489-496.
  • Handle: RePEc:eee:energy:v:45:y:2012:i:1:p:489-496
    DOI: 10.1016/j.energy.2012.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212001077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-attab, K.A. & Zainal, Z.A., 2010. "Performance of high-temperature heat exchangers in biomass fuel powered externally fired gas turbine systems," Renewable Energy, Elsevier, vol. 35(5), pages 913-920.
    2. Halıcı, Fethi & Taymaz, İmdat & Gündüz, Mehmet, 2001. "The effect of the number of tube rows on heat, mass and momentum transfer in flat-plate finned tube heat exchangers," Energy, Elsevier, vol. 26(11), pages 963-972.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Mello, Paulo Eduardo Batista & Villanueva, Helio Henrique Santomo & Scuotto, Sérgio & Donato, Gustavo Henrique Bolognesi & Ortega, Fernando dos Santos, 2017. "Heat transfer, pressure drop and structural analysis of a finned plate ceramic heat exchanger," Energy, Elsevier, vol. 120(C), pages 597-607.
    2. Kashyap, Sarvesh & Sarkar, Jahar & Kumar, Amitesh, 2021. "Performance enhancement of regenerative evaporative cooler by surface alterations and using ternary hybrid nanofluids," Energy, Elsevier, vol. 225(C).
    3. Zhang, Ji & Zhu, Xiaowei & Mondejar, Maria E. & Haglind, Fredrik, 2019. "A review of heat transfer enhancement techniques in plate heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 305-328.
    4. Chu, Wen-xiao & Ma, Ting & Zeng, Min & Qu, Ting & Wang, Liang-bi & Wang, Qiu-wang, 2014. "Improvements on maldistribution of a high temperature multi-channel compact heat exchanger by different inlet baffles," Energy, Elsevier, vol. 75(C), pages 104-115.
    5. Daróczy, László & Janiga, Gábor & Thévenin, Dominique, 2014. "Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization," Energy, Elsevier, vol. 65(C), pages 364-373.
    6. Villanueva, Helio Henrique Santomo & de Mello, Paulo Eduardo Batista, 2015. "Heat transfer and pressure drop correlations for finned plate ceramic heat exchangers," Energy, Elsevier, vol. 88(C), pages 118-125.
    7. Nagarajan, Vijaisri & Chen, Yitung & Wang, Qiuwang & Ma, Ting, 2014. "Hydraulic and thermal performances of a novel configuration of high temperature ceramic plate-fin heat exchanger," Applied Energy, Elsevier, vol. 113(C), pages 589-602.
    8. Xia, H.H. & Tang, G.H. & Shi, Y. & Tao, W.Q., 2014. "Simulation of heat transfer enhancement by longitudinal vortex generators in dimple heat exchangers," Energy, Elsevier, vol. 74(C), pages 27-36.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kardaś, Dariusz & Polesek-Karczewska, Sylwia & Turzyński, Tomasz & Wardach-Święcicka, Izabela & Hercel, Paulina & Szymborski, Jakub & Heda, Łukasz, 2023. "Thermal performance enhancement of a red-hot air furnace for a micro-scale externally fired gas turbine system," Energy, Elsevier, vol. 282(C).
    2. Dawid Taler & Jan Taler & Marcin Trojan, 2020. "Experimental Verification of an Analytical Mathematical Model of a Round or Oval Tube Two-Row Car Radiator," Energies, MDPI, vol. 13(13), pages 1-23, July.
    3. Ko, Yun Mo & Song, Joo Young & Lee, Jae Won & Sohn, Sangho & Song, Chan Ho & Khoshvaght-Aliabadi, Morteza & Kim, Yongchan & Kang, Yong Tae, 2024. "A critical review on Colburn j-factor and f-factor and energy performance analysis for finned tube heat exchangers," Energy, Elsevier, vol. 287(C).
    4. Taler, Dawid & Taler, Jan & Trojan, Marcin, 2020. "Thermal calculations of plate–fin–and-tube heat exchangers with different heat transfer coefficients on each tube row," Energy, Elsevier, vol. 203(C).
    5. Villanueva, Helio Henrique Santomo & de Mello, Paulo Eduardo Batista, 2015. "Heat transfer and pressure drop correlations for finned plate ceramic heat exchangers," Energy, Elsevier, vol. 88(C), pages 118-125.
    6. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    7. Badshah, Noor & Al-attab, K.A. & Zainal, Z.A., 2020. "Design optimization and experimental analysis of externally fired gas turbine system fuelled by biomass," Energy, Elsevier, vol. 198(C).
    8. Ramoon Barros Lovate Temporim & Gianluca Cavalaglio & Alessandro Petrozzi & Valentina Coccia & Paola Iodice & Andrea Nicolini & Franco Cotana, 2022. "Life Cycle Assessment and Energy Balance of a Polygeneration Plant Fed with Lignocellulosic Biomass of Cynara cardunculus L," Energies, MDPI, vol. 15(7), pages 1-21, March.
    9. de Mello, Paulo Eduardo Batista & Villanueva, Helio Henrique Santomo & Scuotto, Sérgio & Donato, Gustavo Henrique Bolognesi & Ortega, Fernando dos Santos, 2017. "Heat transfer, pressure drop and structural analysis of a finned plate ceramic heat exchanger," Energy, Elsevier, vol. 120(C), pages 597-607.
    10. Al-attab, K.A. & Zainal, Z.A., 2015. "Externally fired gas turbine technology: A review," Applied Energy, Elsevier, vol. 138(C), pages 474-487.
    11. Kundu, Balaram & Barman, Debasis, 2011. "An analytical prediction for performance and optimization of an annular fin assembly of trapezoidal profile under dehumidifying conditions," Energy, Elsevier, vol. 36(5), pages 2572-2588.
    12. Tahseen, Tahseen Ahmad & Ishak, M. & Rahman, M.M., 2015. "An overview on thermal and fluid flow characteristics in a plain plate finned and un-finned tube banks heat exchanger," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 363-380.
    13. de Mello, Paulo Eduardo Batista & Monteiro, Deiglys Borges, 2012. "Thermodynamic study of an EFGT (externally fired gas turbine) cycle with one detailed model for the ceramic heat exchanger," Energy, Elsevier, vol. 45(1), pages 497-502.
    14. Iora, P. & Silva, P., 2013. "Innovative combined heat and power system based on a double shaft intercooled externally fired gas cycle," Applied Energy, Elsevier, vol. 105(C), pages 108-115.
    15. Zhang, Pan & Ma, Ting & Li, Wei-Dong & Ma, Guang-Yu & Wang, Qiu-Wang, 2018. "Design and optimization of a novel high temperature heat exchanger for waste heat cascade recovery from exhaust flue gases," Energy, Elsevier, vol. 160(C), pages 3-18.
    16. Ramoon Barros Lovate Temporim & Gianluca Cavalaglio & Alessandro Petrozzi & Valentina Coccia & Franco Cotana & Andrea Nicolini, 2022. "Life Cycle Assessment of Cynara cardunculus L. -Based Polygeneration and Biodiesel Chains," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    17. Vera, David & Jurado, Francisco & Carpio, José & Kamel, Salah, 2018. "Biomass gasification coupled to an EFGT-ORC combined system to maximize the electrical energy generation: A case applied to the olive oil industry," Energy, Elsevier, vol. 144(C), pages 41-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:45:y:2012:i:1:p:489-496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.