IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp589-602.html
   My bibliography  Save this article

Hydraulic and thermal performances of a novel configuration of high temperature ceramic plate-fin heat exchanger

Author

Listed:
  • Nagarajan, Vijaisri
  • Chen, Yitung
  • Wang, Qiuwang
  • Ma, Ting

Abstract

A novel fin configuration for high temperature ceramic plate-fin heat exchanger (PFHE) was developed using the three-dimensional computational fluid dynamics (CFD) FLUENT code. Numerical analysis was carried out for different types of fins and their results were compared with the selected design. The working fluids used in the model were sulfur trioxide, sulfur dioxide, oxygen and water vapor. Fluid flow, heat transfer, pressure drop and properties like Nusselt number, friction factor and j-factor were studied for various fin configurations. The rip saw fin design (case 9) with thickness of 0.05mm gives the maximum heat transfer performance with less pressure drop and friction factor. The numerical result was compared with the analytical result for rectangular fins and they were found to be in reasonable agreement. In addition to it, the results from the selected ripsaw design were compared with the result from the model with no fins (case 1). It was found that thermal enhancement factor of 2.3211 and average Nusselt number of 4.215 was obtained for the selected design. The results of the rip saw fin design were found in good agreement with the analytical results of a rectangular fin. Further effects of Reynolds number on pressure drop and Nusselt number were studied.

Suggested Citation

  • Nagarajan, Vijaisri & Chen, Yitung & Wang, Qiuwang & Ma, Ting, 2014. "Hydraulic and thermal performances of a novel configuration of high temperature ceramic plate-fin heat exchanger," Applied Energy, Elsevier, vol. 113(C), pages 589-602.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:589-602
    DOI: 10.1016/j.apenergy.2013.07.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191300603X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.07.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yakut, Kenan & Alemdaroglu, Nihal & Sahin, Bayram & Celik, Cafer, 2006. "Optimum design-parameters of a heat exchanger having hexagonal fins," Applied Energy, Elsevier, vol. 83(2), pages 82-98, February.
    2. Naik, S. & Probert, S.D. & Wood, C.I., 1988. "Thermal-hydraulic characteristics of a heat exchanger: The vertical rectangular fins being aligned parallel to the mean air-flow in the duct," Applied Energy, Elsevier, vol. 29(3), pages 217-252.
    3. Monteiro, Deiglys Borges & de Mello, Paulo Eduardo Batista, 2012. "Thermal performance and pressure drop in a ceramic heat exchanger evaluated using CFD simulations," Energy, Elsevier, vol. 45(1), pages 489-496.
    4. Ma, Ting & Wang, Qiu-wang & Zeng, Min & Chen, Yi-tung & Liu, Yang & Nagarajan, Vijaisri, 2012. "Study on heat transfer and pressure drop performances of ribbed channel in the high temperature heat exchanger," Applied Energy, Elsevier, vol. 99(C), pages 393-401.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhe & Li, Yanzhong, 2016. "A combined method for surface selection and layer pattern optimization of a multistream plate-fin heat exchanger," Applied Energy, Elsevier, vol. 165(C), pages 815-827.
    2. Mustansar Hayat Saggu & Nadeem Ahmed Sheikh & Usama Muhamad Niazi & Muhammad Irfan & Adam Glowacz & Stanislaw Legutko, 2020. "Improved Analysis on the Fin Reliability of a Plate Fin Heat Exchanger for Usage in LNG Applications," Energies, MDPI, vol. 13(14), pages 1-16, July.
    3. Hadidi, Amin, 2015. "A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm," Applied Energy, Elsevier, vol. 150(C), pages 196-210.
    4. Wang, Qiuwang & Zeng, Min & Ma, Ting & Du, Xueping & Yang, Jianfeng, 2014. "Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization," Applied Energy, Elsevier, vol. 135(C), pages 748-777.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kashyap, Sarvesh & Sarkar, Jahar & Kumar, Amitesh, 2021. "Performance enhancement of regenerative evaporative cooler by surface alterations and using ternary hybrid nanofluids," Energy, Elsevier, vol. 225(C).
    2. Sheikholeslami, M. & Ganji, D.D., 2016. "Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies," Energy, Elsevier, vol. 116(P1), pages 341-352.
    3. Villanueva, Helio Henrique Santomo & de Mello, Paulo Eduardo Batista, 2015. "Heat transfer and pressure drop correlations for finned plate ceramic heat exchangers," Energy, Elsevier, vol. 88(C), pages 118-125.
    4. Kuruneru, Sahan Trushad Wickramasooriya & Sauret, Emilie & Saha, Suvash Chandra & Gu, YuanTong, 2016. "Numerical investigation of the temporal evolution of particulate fouling in metal foams for air-cooled heat exchangers," Applied Energy, Elsevier, vol. 184(C), pages 531-547.
    5. de Mello, Paulo Eduardo Batista & Villanueva, Helio Henrique Santomo & Scuotto, Sérgio & Donato, Gustavo Henrique Bolognesi & Ortega, Fernando dos Santos, 2017. "Heat transfer, pressure drop and structural analysis of a finned plate ceramic heat exchanger," Energy, Elsevier, vol. 120(C), pages 597-607.
    6. Thakur, Deep Singh & Khan, Mohd. Kaleem & Pathak, Manabendra, 2017. "Performance evaluation of solar air heater with novel hyperbolic rib geometry," Renewable Energy, Elsevier, vol. 105(C), pages 786-797.
    7. Chu, Wen-xiao & Ma, Ting & Zeng, Min & Qu, Ting & Wang, Liang-bi & Wang, Qiu-wang, 2014. "Improvements on maldistribution of a high temperature multi-channel compact heat exchanger by different inlet baffles," Energy, Elsevier, vol. 75(C), pages 104-115.
    8. Iora, P. & Silva, P., 2013. "Innovative combined heat and power system based on a double shaft intercooled externally fired gas cycle," Applied Energy, Elsevier, vol. 105(C), pages 108-115.
    9. Vera Barinova, 2012. "Institutional Conditions for Innovative Development of a Firm," Published Papers 170, Gaidar Institute for Economic Policy, revised 2013.
    10. Ozceyhan, Veysel & Gunes, Sibel & Buyukalaca, Orhan & Altuntop, Necdet, 2008. "Heat transfer enhancement in a tube using circular cross sectional rings separated from wall," Applied Energy, Elsevier, vol. 85(10), pages 988-1001, October.
    11. Xia, H.H. & Tang, G.H. & Shi, Y. & Tao, W.Q., 2014. "Simulation of heat transfer enhancement by longitudinal vortex generators in dimple heat exchangers," Energy, Elsevier, vol. 74(C), pages 27-36.
    12. Aghaie, Alireza Zamani & Rahimi, Asghar B. & Akbarzadeh, Alireza, 2015. "A general optimized geometry of angled ribs for enhancing the thermo-hydraulic behavior of a solar air heater channel – A Taguchi approach," Renewable Energy, Elsevier, vol. 83(C), pages 47-54.
    13. Ganapathy, T. & Murugesan, K. & Gakkhar, R.P., 2009. "Performance optimization of Jatropha biodiesel engine model using Taguchi approach," Applied Energy, Elsevier, vol. 86(11), pages 2476-2486, November.
    14. Namkyu Lee & Beom Seok Kim & Hokyu Moon & Joon-Soo Lim & Hyung Hee Cho, 2019. "Heat-Absorbing Capacity of High-Heat-Flux Components in Nuclear Fusion Reactors," Energies, MDPI, vol. 12(19), pages 1-15, October.
    15. Daróczy, László & Janiga, Gábor & Thévenin, Dominique, 2014. "Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization," Energy, Elsevier, vol. 65(C), pages 364-373.
    16. Zhang, Ji & Zhu, Xiaowei & Mondejar, Maria E. & Haglind, Fredrik, 2019. "A review of heat transfer enhancement techniques in plate heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 305-328.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:589-602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.