IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v45y2012i1p312-323.html
   My bibliography  Save this article

Zero CO2 emission SOLRGT power system

Author

Listed:
  • Luo, Chending
  • Zhang, Na

Abstract

A novel hybrid power system with zero CO2 emission (ZE-SOLRGT) has been proposed and analyzed in this paper. It consists of a high temperature Brayton-like topping cycle and a high pressure-ratio Rankine-like bottoming cycle, integrated with methane-steam reforming, solar heat-assisted steam generation and CO2 capture and compression. Water is selected to be the working fluid. Solar heat input enhances the steam generation and power output, and reduces fossil fuel consumption. Besides CO2 capture with oxy-fuel combustion and cascade recuperation of turbine exhaust heat, the system is featured with indirect upgrading of low-mid temperature solar heat and cascade release of fossil fuel chemical exergy, which is described by the energy level concept. With nearly 100% CO2 capture, the system attains a net energy efficiency of 50.7% (including consideration of the energy needed for oxygen separation). The cost of generated electricity and the payback period of ZE-SOLRGT are found to be $0.056/kWh and 11.3 years, respectively. The system integration accomplishes the complementary utilization of fossil fuel and solar heat, and attains their high efficiency conversion into electricity.

Suggested Citation

  • Luo, Chending & Zhang, Na, 2012. "Zero CO2 emission SOLRGT power system," Energy, Elsevier, vol. 45(1), pages 312-323.
  • Handle: RePEc:eee:energy:v:45:y:2012:i:1:p:312-323
    DOI: 10.1016/j.energy.2012.04.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212003751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.04.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Na & Lior, Noam, 2008. "Two novel oxy-fuel power cycles integrated with natural gas reforming and CO2 capture," Energy, Elsevier, vol. 33(2), pages 340-351.
    2. Calds, N. & Varela, M. & Santamara, M. & Sez, R., 2009. "Economic impact of solar thermal electricity deployment in Spain," Energy Policy, Elsevier, vol. 37(5), pages 1628-1636, May.
    3. Kvamsdal, Hanne M. & Jordal, Kristin & Bolland, Olav, 2007. "A quantitative comparison of gas turbine cycles with CO2 capture," Energy, Elsevier, vol. 32(1), pages 10-24.
    4. Dersch, Jürgen & Geyer, Michael & Herrmann, Ulf & Jones, Scott A. & Kelly, Bruce & Kistner, Rainer & Ortmanns, Winfried & Pitz-Paal, Robert & Price, Henry, 2004. "Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems," Energy, Elsevier, vol. 29(5), pages 947-959.
    5. Zhang, Na & Lior, Noam & Liu, Meng & Han, Wei, 2010. "COOLCEP (cool clean efficient power): A novel CO2-capturing oxy-fuel power system with LNG (liquefied natural gas) coldness energy utilization," Energy, Elsevier, vol. 35(2), pages 1200-1210.
    6. Herrmann, Ulf & Kelly, Bruce & Price, Henry, 2004. "Two-tank molten salt storage for parabolic trough solar power plants," Energy, Elsevier, vol. 29(5), pages 883-893.
    7. Alexopoulos, Spiros & Hoffschmidt, Bernhard, 2010. "Solar tower power plant in Germany and future perspectives of the development of the technology in Greece and Cyprus," Renewable Energy, Elsevier, vol. 35(7), pages 1352-1356.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Hui & Zhao, Liang & Zhang, Songyuan & Wang, Aihua & Cai, Jiuju, 2013. "Using cryogenic exergy of liquefied natural gas for electricity production with the Stirling cycle," Energy, Elsevier, vol. 63(C), pages 10-18.
    2. Li, Yuanyuan & Yang, Yongping, 2015. "Impacts of solar multiples on the performance of integrated solar combined cycle systems with two direct steam generation fields," Applied Energy, Elsevier, vol. 160(C), pages 673-680.
    3. Sheu, Elysia J. & Mitsos, Alexander, 2013. "Optimization of a hybrid solar-fossil fuel plant: Solar steam reforming of methane in a combined cycle," Energy, Elsevier, vol. 51(C), pages 193-202.
    4. Li, Yuanyuan & Zhang, Na & Cai, Ruixian & Yang, Yongping, 2013. "Performance analysis of a near zero CO2 emission solar hybrid power generation system," Applied Energy, Elsevier, vol. 112(C), pages 727-736.
    5. Zhang, Guoqiang & Li, Yuanyuan & Zhang, Na, 2017. "Performance analysis of a novel low CO2-emission solar hybrid combined cycle power system," Energy, Elsevier, vol. 128(C), pages 152-162.
    6. Li, Yuanyuan & Zhang, Na & Cai, Ruixian, 2013. "Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming," Energy, Elsevier, vol. 58(C), pages 36-44.
    7. Yue, Ting & Lior, Noam, 2017. "Exergo economic analysis of solar-assisted hybrid power generation systems integrated with thermochemical fuel conversion," Applied Energy, Elsevier, vol. 191(C), pages 204-222.
    8. Fumin Pan & Xiaobei Cheng & Xin Wu & Xin Wang & Jingfeng Gong, 2019. "Thermodynamic Design and Performance Calculation of the Thermochemical Reformers," Energies, MDPI, vol. 12(19), pages 1-14, September.
    9. Li, Yuanyuan & Xiong, Yamin, 2018. "Thermo-economic analysis of a novel cascade integrated solar combined cycle system," Energy, Elsevier, vol. 145(C), pages 116-127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yuanyuan & Zhang, Na & Cai, Ruixian & Yang, Yongping, 2013. "Performance analysis of a near zero CO2 emission solar hybrid power generation system," Applied Energy, Elsevier, vol. 112(C), pages 727-736.
    2. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    3. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    4. Bataineh, Khaled M., 2016. "Optimization analysis of solar thermal water pump," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 603-613.
    5. Xu, Gang & Li, Le & Yang, Yongping & Tian, Longhu & Liu, Tong & Zhang, Kai, 2012. "A novel CO2 cryogenic liquefaction and separation system," Energy, Elsevier, vol. 42(1), pages 522-529.
    6. Qin, Frank G.F. & Yang, Xiaoping & Ding, Zhan & Zuo, Yuanzhi & Shao, Youyan & Jiang, Runhua & Yang, Xiaoxi, 2012. "Thermocline stability criterions in single-tanks of molten salt thermal energy storage," Applied Energy, Elsevier, vol. 97(C), pages 816-821.
    7. Li, Yuanyuan & Zhang, Na & Cai, Ruixian, 2013. "Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming," Energy, Elsevier, vol. 58(C), pages 36-44.
    8. Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Han, Yixiao & Liang, Ying, 2018. "Study on the configuration of bottom cycle in natural gas combined cycle power plants integrated with oxy-fuel combustion," Applied Energy, Elsevier, vol. 212(C), pages 465-477.
    9. Luo, Chending & Zhang, Na & Lior, Noam & Lin, Hu, 2011. "Proposal and analysis of a dual-purpose system integrating a chemically recuperated gas turbine cycle with thermal seawater desalination," Energy, Elsevier, vol. 36(6), pages 3791-3803.
    10. Babaelahi, Mojtaba & Mofidipour, Ehsan & Rafat, Ehsan, 2020. "Combined Energy-Exergy-Control (CEEC) analysis and multi-objective optimization of parabolic trough solar collector powered steam power plant," Energy, Elsevier, vol. 201(C).
    11. Burdyny, Thomas & Struchtrup, Henning, 2010. "Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process," Energy, Elsevier, vol. 35(5), pages 1884-1897.
    12. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    13. Chung-Ling Chien, John & Lior, Noam, 2011. "Concentrating solar thermal power as a viable alternative in China's electricity supply," Energy Policy, Elsevier, vol. 39(12), pages 7622-7636.
    14. Wu, Jiafeng & Chen, Yaping & Zhu, Zilong & Zheng, Shuxing, 2020. "Analysis on full CO2 capture schemes in NG/O2 combustion gas and steam mixture cycle (GSMC)," Energy, Elsevier, vol. 191(C).
    15. Mihoub, Sofiane & Chermiti, Ali & Beltagy, Hani, 2017. "Methodology of determining the optimum performances of future concentrating solar thermal power plants in Algeria," Energy, Elsevier, vol. 122(C), pages 801-810.
    16. Wu, Jiafeng & Chen, Yaping & Zhu, Zilong & Mei, Xianzhi & Zhang, Shaobo & Zhang, Baohuai, 2017. "Performance simulation on NG/O2 combustion gas and steam mixture cycle with energy storage and CO2 capture," Applied Energy, Elsevier, vol. 196(C), pages 68-81.
    17. Steffen Fahr & Julian Powell & Alice Favero & Anthony J. Giarrusso & Ryan P. Lively & Matthew J. Realff, 2022. "Assessing the physical potential capacity of direct air capture with integrated supply of low‐carbon energy sources," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(1), pages 170-188, February.
    18. Paweł Ziółkowski & Stanisław Głuch & Piotr Józef Ziółkowski & Janusz Badur, 2022. "Compact High Efficiency and Zero-Emission Gas-Fired Power Plant with Oxy-Combustion and Carbon Capture," Energies, MDPI, vol. 15(7), pages 1-39, April.
    19. Romero Gómez, Manuel & Romero Gómez, Javier & López-González, Luis M. & López-Ochoa, Luis M., 2016. "Thermodynamic analysis of a novel power plant with LNG (liquefied natural gas) cold exergy exploitation and CO2 capture," Energy, Elsevier, vol. 105(C), pages 32-44.
    20. Li, Xiaolei & Xu, Ershu & Song, Shuang & Wang, Xiangyan & Yuan, Guofeng, 2017. "Dynamic simulation of two-tank indirect thermal energy storage system with molten salt," Renewable Energy, Elsevier, vol. 113(C), pages 1311-1319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:45:y:2012:i:1:p:312-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.