Performance analysis of a near zero CO2 emission solar hybrid power generation system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2013.05.069
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Yuanyuan & Zhang, Na & Cai, Ruixian, 2013. "Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming," Energy, Elsevier, vol. 58(C), pages 36-44.
- Li, Yuan Yuan & Zhang, Na & Cai, Rui Xian, 2012. "Parametric sensitivity analysis of a SOLRGT system with the indirect upgrading of low/mid-temperature solar heat," Applied Energy, Elsevier, vol. 97(C), pages 648-655.
- Dersch, Jürgen & Geyer, Michael & Herrmann, Ulf & Jones, Scott A. & Kelly, Bruce & Kistner, Rainer & Ortmanns, Winfried & Pitz-Paal, Robert & Price, Henry, 2004. "Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems," Energy, Elsevier, vol. 29(5), pages 947-959.
- Kvamsdal, Hanne M. & Jordal, Kristin & Bolland, Olav, 2007. "A quantitative comparison of gas turbine cycles with CO2 capture," Energy, Elsevier, vol. 32(1), pages 10-24.
- Luo, Chending & Zhang, Na, 2012. "Zero CO2 emission SOLRGT power system," Energy, Elsevier, vol. 45(1), pages 312-323.
- Hu, Eric & Yang, YongPing & Nishimura, Akira & Yilmaz, Ferdi & Kouzani, Abbas, 2010. "Solar thermal aided power generation," Applied Energy, Elsevier, vol. 87(9), pages 2881-2885, September.
- Herrmann, Ulf & Kelly, Bruce & Price, Henry, 2004. "Two-tank molten salt storage for parabolic trough solar power plants," Energy, Elsevier, vol. 29(5), pages 883-893.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yue, Ting & Lior, Noam, 2017. "Exergo economic analysis of solar-assisted hybrid power generation systems integrated with thermochemical fuel conversion," Applied Energy, Elsevier, vol. 191(C), pages 204-222.
- Zhang, Guoqiang & Li, Yuanyuan & Zhang, Na, 2017. "Performance analysis of a novel low CO2-emission solar hybrid combined cycle power system," Energy, Elsevier, vol. 128(C), pages 152-162.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Yuanyuan & Xiong, Yamin, 2018. "Thermo-economic analysis of a novel cascade integrated solar combined cycle system," Energy, Elsevier, vol. 145(C), pages 116-127.
- Zhang, Guoqiang & Li, Yuanyuan & Zhang, Na, 2017. "Performance analysis of a novel low CO2-emission solar hybrid combined cycle power system," Energy, Elsevier, vol. 128(C), pages 152-162.
- Luo, Chending & Zhang, Na, 2012. "Zero CO2 emission SOLRGT power system," Energy, Elsevier, vol. 45(1), pages 312-323.
- Li, Yuanyuan & Zhang, Na & Cai, Ruixian, 2013. "Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming," Energy, Elsevier, vol. 58(C), pages 36-44.
- Li, Yuanyuan & Yang, Yongping, 2014. "Thermodynamic analysis of a novel integrated solar combined cycle," Applied Energy, Elsevier, vol. 122(C), pages 133-142.
- Yue, Ting & Lior, Noam, 2017. "Exergo economic analysis of solar-assisted hybrid power generation systems integrated with thermochemical fuel conversion," Applied Energy, Elsevier, vol. 191(C), pages 204-222.
- Hou, Hongjuan & Xu, Zhang & Yang, Yongping, 2016. "An evaluation method of solar contribution in a solar aided power generation (SAPG) system based on exergy analysis," Applied Energy, Elsevier, vol. 182(C), pages 1-8.
- Li, Chunxi & Guo, Shiqi & Ye, Xuemin & Fu, Wenfeng, 2019. "Performance and thermoeconomics of solar-aided double-reheat coal-fired power systems with carbon capture," Energy, Elsevier, vol. 177(C), pages 1-15.
- Zhang, Nan & Hou, Hongjuan & Yu, Gang & Hu, Eric & Duan, Liqiang & Zhao, Jin, 2019. "Simulated performance analysis of a solar aided power generation plant in fuel saving operation mode," Energy, Elsevier, vol. 166(C), pages 918-928.
- Bataineh, Khaled M., 2016. "Optimization analysis of solar thermal water pump," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 603-613.
- Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2013. "Allocating electricity production from a hybrid fossil-renewable power plant among its multi primary resources," Energy, Elsevier, vol. 60(C), pages 344-360.
- Zhai, Rongrong & Zhao, Miaomiao & Tan, Kaiyu & Yang, Yongping, 2015. "Optimizing operation of a solar-aided coal-fired power system based on the solar contribution evaluation method," Applied Energy, Elsevier, vol. 146(C), pages 328-334.
- Qin, Frank G.F. & Yang, Xiaoping & Ding, Zhan & Zuo, Yuanzhi & Shao, Youyan & Jiang, Runhua & Yang, Xiaoxi, 2012. "Thermocline stability criterions in single-tanks of molten salt thermal energy storage," Applied Energy, Elsevier, vol. 97(C), pages 816-821.
- Steffen Fahr & Julian Powell & Alice Favero & Anthony J. Giarrusso & Ryan P. Lively & Matthew J. Realff, 2022. "Assessing the physical potential capacity of direct air capture with integrated supply of low‐carbon energy sources," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(1), pages 170-188, February.
- Jamel, M.S. & Abd Rahman, A. & Shamsuddin, A.H., 2013. "Advances in the integration of solar thermal energy with conventional and non-conventional power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 71-81.
- Agudelo, Andrés & Valero, Antonio & Usón, Sergio, 2013. "The fossil trace of CO2 emissions in multi-fuel energy systems," Energy, Elsevier, vol. 58(C), pages 236-246.
- Peng, Shuo & Hong, Hui & Wang, Yanjuan & Wang, Zhaoguo & Jin, Hongguang, 2014. "Off-design thermodynamic performances on typical days of a 330MW solar aided coal-fired power plant in China," Applied Energy, Elsevier, vol. 130(C), pages 500-509.
- Babaelahi, Mojtaba & Mofidipour, Ehsan & Rafat, Ehsan, 2020. "Combined Energy-Exergy-Control (CEEC) analysis and multi-objective optimization of parabolic trough solar collector powered steam power plant," Energy, Elsevier, vol. 201(C).
- Sheu, Elysia J. & Mitsos, Alexander, 2013. "Optimization of a hybrid solar-fossil fuel plant: Solar steam reforming of methane in a combined cycle," Energy, Elsevier, vol. 51(C), pages 193-202.
- Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
More about this item
Keywords
Hybrid system; Oxy-fuel cycle; Solar heat; Zero CO2 emission; Performance analysis;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:112:y:2013:i:c:p:727-736. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.