IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v41y2012i1p252-260.html
   My bibliography  Save this article

Experimental analysis on a spark ignition petrol engine fuelled with LPG (liquefied petroleum gas)

Author

Listed:
  • Masi, Massimo

Abstract

The use of LPG (liquefied petroleum gas) as alternative fuel to petrol is common practise in spark ignition engines. While the main driving force to the use of LPG still remains the low cost for the end user, its favourable pollutant emissions, in particular carbon dioxide, will in the middle term probably increase interest in LPG as an IC engine fuel. In addition, there are both theoretical and technical reasons to consider LPG as an attractive fuel also in terms of engine performance. Despite the continuously increasing stock production of dual-fuel (petrol–LPG) passenger car models, doubts still exist about both real engine performance in LPG operation and the reliability of the dual-fuel feeding system. This paper deals with the theoretical advantages of using LPG as fuel for SI engines. Brake performance tests of a passenger car engine fed with petrol and LPG are analysed and compared. The stock engine has been equipped with a “third-generation” standard kit for dual-fuel operation. The performance reductions in LPG operation are discussed in both steady state and transient condition. The results of some modifications to the set-up of both the petrol and LPG metering devices, designed for a better justification of the measured performance, are also presented.

Suggested Citation

  • Masi, Massimo, 2012. "Experimental analysis on a spark ignition petrol engine fuelled with LPG (liquefied petroleum gas)," Energy, Elsevier, vol. 41(1), pages 252-260.
  • Handle: RePEc:eee:energy:v:41:y:2012:i:1:p:252-260
    DOI: 10.1016/j.energy.2011.05.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211003549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.05.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gong, Changming & Huang, Kuo & Deng, Baoqing & Liu, Xunjun, 2011. "Catalyst light-off behavior of a spark-ignition LPG (liquefied petroleum gas) engine during cold start," Energy, Elsevier, vol. 36(1), pages 53-59.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Altın, İsmail & Bilgin, Atilla & Çeper, Bilge Albayrak, 2017. "Parametric study on some combustion characteristics in a natural gas fueled dual plug SI engine," Energy, Elsevier, vol. 139(C), pages 1237-1242.
    2. Lu, Peng & Sun, Jian & Shen, Dongming & Yang, Ruiqin & Xing, Chuang & Lu, Chengxue & Tsubaki, Noritatsu & Shan, Shengdao, 2018. "Direct syngas conversion to liquefied petroleum gas: Importance of a multifunctional metal-zeolite interface," Applied Energy, Elsevier, vol. 209(C), pages 1-7.
    3. Myung, Cha-Lee & Choi, Kwanhee & Kim, Juwon & Lim, Yunsung & Lee, Jongtae & Park, Simsoo, 2012. "Comparative study of regulated and unregulated toxic emissions characteristics from a spark ignition direct injection light-duty vehicle fueled with gasoline and liquid phase LPG (liquefied petroleum ," Energy, Elsevier, vol. 44(1), pages 189-196.
    4. Raslavičius, Laurencas & Keršys, Artūras & Mockus, Saulius & Keršienė, Neringa & Starevičius, Martynas, 2014. "Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 513-525.
    5. Çay, Yusuf & Korkmaz, Ibrahim & Çiçek, Adem & Kara, Fuat, 2013. "Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network," Energy, Elsevier, vol. 50(C), pages 177-186.
    6. Ivan Manko & Jonas Matijošius & Yevheniy Shuba & Alfredas Rimkus & Serhiy Gutarevych & Viktor Slavin, 2022. "Using Mathematical Modeling to Evaluate the Performance of a Passenger Car When Operating on Various Fuels," Energies, MDPI, vol. 15(17), pages 1-11, August.
    7. Kim, Keunsoo & Kim, Junghwan & Oh, Seungmook & Kim, Changup & Lee, Yonggyu, 2017. "Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions," Applied Energy, Elsevier, vol. 194(C), pages 123-135.
    8. Dinesh, M.H. & Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effect of parallel LPG fuelling in a methanol fuelled SI engine under variable compression ratio," Energy, Elsevier, vol. 239(PC).
    9. Ji, Changwei & Liang, Chen & Gao, Binbin & Wei, Baojian & Liu, Xiaolong & Zhu, Yongming, 2013. "The cold start performance of a spark-ignited dimethyl ether engine," Energy, Elsevier, vol. 50(C), pages 187-193.
    10. Branislav Šarkan & Marek Jaśkiewicz & Przemysław Kubiak & Dariusz Tarnapowicz & Michal Loman, 2022. "Exhaust Emissions Measurement of a Vehicle with Retrofitted LPG System," Energies, MDPI, vol. 15(3), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xin & Ge, Yunshan & Liu, Linlin & Peng, Zihang & Hao, Lijun & Yin, Hang & Ding, Yan & Wang, Junfang, 2015. "Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios," Applied Energy, Elsevier, vol. 157(C), pages 134-143.
    2. Cha-Lee Myung & Juwon Kim & Wonwook Jang & Dongyoung Jin & Simsoo Park & Jeongmin Lee, 2015. "Nanoparticle Filtration Characteristics of Advanced Metal Foam Media for a Spark Ignition Direct Injection Engine in Steady Engine Operating Conditions and Vehicle Test Modes," Energies, MDPI, vol. 8(3), pages 1-17, March.
    3. Gong, Changming & Liu, Jiajun & Peng, Legao & Liu, Fenghua, 2017. "Numerical study of effect of injection and ignition timings on combustion and unregulated emissions of DISI methanol engine during cold start," Renewable Energy, Elsevier, vol. 112(C), pages 457-465.
    4. Najjar, Yousef S.H., 2011. "Comparison of performance of a Greener direct-injection stratified-charge (DISC) engine with a spark-ignition engine using a simplified model," Energy, Elsevier, vol. 36(7), pages 4136-4143.
    5. Hamedi, Mohammad Reza & Doustdar, Omid & Tsolakis, Athanasios & Hartland, Jonathan, 2021. "Energy-efficient heating strategies of diesel oxidation catalyst for low emissions vehicles," Energy, Elsevier, vol. 230(C).
    6. Wang, Xin & Ge, Yunshan & Zhang, Chuanzhen & Tan, Jianwei & Hao, Lijun & Liu, Jia & Gong, Huiming, 2016. "Effects of engine misfire on regulated, unregulated emissions from a methanol-fueled vehicle and its ozone forming potential," Applied Energy, Elsevier, vol. 177(C), pages 187-195.
    7. Kim, Tae Young & Park, Cheolwoong & Oh, Seungmook & Cho, Gyuback, 2016. "The effects of stratified lean combustion and exhaust gas recirculation on combustion and emission characteristics of an LPG direct injection engine," Energy, Elsevier, vol. 115(P1), pages 386-396.
    8. Sheng Su & Yunshan Ge & Xin Wang & Mengzhu Zhang & Lijun Hao & Jianwei Tan & Fulu Shi & Dongdong Guo & Zhengjun Yang, 2020. "Evaluating the In-Service Emissions of High-Mileage Dedicated Methanol-Fueled Passenger Cars: Regulated and Unregulated Emissions," Energies, MDPI, vol. 13(11), pages 1-15, May.
    9. Li, Zhaohui & Gong, Changming & Qu, Xiang & Liu, Fenghua & Sun, Jingzhen & Wang, Kang & Li, Yufeng, 2015. "Critical firing and misfiring boundary in a spark ignition methanol engine during cold start based on single cycle fuel injection," Energy, Elsevier, vol. 89(C), pages 236-243.
    10. Ji, Changwei & Yang, Jinxin & Liu, Xiaolong & Wang, Shuofeng & Zhang, Bo & Wang, Du, 2016. "Enhancing the fuel economy and emissions performance of a gasoline engine-powered vehicle with idle elimination and hydrogen start," Applied Energy, Elsevier, vol. 182(C), pages 135-144.
    11. Myung, Cha-Lee & Choi, Kwanhee & Kim, Juwon & Lim, Yunsung & Lee, Jongtae & Park, Simsoo, 2012. "Comparative study of regulated and unregulated toxic emissions characteristics from a spark ignition direct injection light-duty vehicle fueled with gasoline and liquid phase LPG (liquefied petroleum ," Energy, Elsevier, vol. 44(1), pages 189-196.
    12. Zhen, Xudong & Wang, Yang, 2015. "An overview of methanol as an internal combustion engine fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 477-493.
    13. Gong, Changming & Liu, Zilong & Su, Hang & Chen, Yulin & Li, Junbo & Liu, Fenghua, 2019. "Effect of injection strategy on cold start firing, combustion and emissions of a LPG/methanol dual-fuel spark-ignition engine," Energy, Elsevier, vol. 178(C), pages 126-133.
    14. Gong, Changming & Sun, Jingzhen & Liu, Fenghua, 2021. "Numerical research on combustion and emissions behaviors of a medium compression ratio direct-injection twin-spark plug synchronous ignition methanol engine under steady-state lean-burn conditions," Energy, Elsevier, vol. 215(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:41:y:2012:i:1:p:252-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.