IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i6-7p1437-1445.html
   My bibliography  Save this article

Review of feasible solar energy applications to water processes

Author

Listed:
  • Blanco, J.
  • Malato, S.
  • Fernández-Ibañez, P.
  • Alarcón, D.
  • Gernjak, W.
  • Maldonado, M.I.

Abstract

In the context of an upcoming energy crisis due to the decline of the Oil Era, water problems are expected to substantially worsen. And vice versa, due to the close relationship between water and energy issues, water problems are also expected to contribute to increased energy problems. Furthermore, environmental considerations, such as global warming, will surely add significant pressure. In this scenario, renewable energies are rapidly increasing their contribution to the global mix, with solar energy clearly having the greatest potential, and in view of the worldwide coincidence that where there is water stress and/or scarcity, there are also good solar radiation levels, the conclusion seems clear suitable technologies must be developed to permit the use of solar energy to simultaneously help solve energy and water problems. The main solar energy applications for water processes presented in this paper are: (i) solar desalination; (ii) solar detoxification and; (iii) solar disinfection.

Suggested Citation

  • Blanco, J. & Malato, S. & Fernández-Ibañez, P. & Alarcón, D. & Gernjak, W. & Maldonado, M.I., 2009. "Review of feasible solar energy applications to water processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1437-1445, August.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:6-7:p:1437-1445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(08)00133-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cavallaro, Fausto & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Mardani, Abbas, 2019. "Assessment of concentrated solar power (CSP) technologies based on a modified intuitionistic fuzzy topsis and trigonometric entropy weights," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 258-270.
    2. Omar, Amr & Nashed, Amir & Li, Qiyuan & Leslie, Greg & Taylor, Robert A., 2020. "Pathways for integrated concentrated solar power - Desalination: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Bora, Leena V. & Mewada, Rajubhai K., 2017. "Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1393-1421.
    4. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    5. Bundschuh, Jochen & Ghaffour, Noreddine & Mahmoudi, Hacene & Goosen, Mattheus & Mushtaq, Shahbaz & Hoinkis, Jan, 2015. "Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 196-206.
    6. Gorjian, Shiva & Ghobadian, Barat, 2015. "Solar desalination: A sustainable solution to water crisis in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 571-584.
    7. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    8. Oyuna Tsydenova & Valeriy Batoev & Agniya Batoeva, 2015. "Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants," IJERPH, MDPI, vol. 12(8), pages 1-20, August.
    9. Palenzuela, Patricia & Zaragoza, Guillermo & Alarcón-Padilla, Diego C. & Guillén, Elena & Ibarra, Mercedes & Blanco, Julián, 2011. "Assessment of different configurations for combined parabolic-trough (PT) solar power and desalination plants in arid regions," Energy, Elsevier, vol. 36(8), pages 4950-4958.
    10. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    11. Huang, Huadong & Shan, Shiquan & Zhou, Zhijun, 2022. "Parametric optimization of a novel solar concentrating photovoltaic-near field thermophotovoltaic hybrid system based on cascade utilization of full-spectrum solar energy," Renewable Energy, Elsevier, vol. 196(C), pages 1443-1454.
    12. Pasqualetti, Martin J. & Haag, Susan, 2011. "A solar economy in the American Southwest: Critical next steps," Energy Policy, Elsevier, vol. 39(2), pages 887-893, February.
    13. Elías-Maxil, J.A. & van der Hoek, Jan Peter & Hofman, Jan & Rietveld, Luuk, 2014. "Energy in the urban water cycle: Actions to reduce the total expenditure of fossil fuels with emphasis on heat reclamation from urban water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 808-820.
    14. de_Richter, Renaud Kiesgen & Ming, Tingzhen & Caillol, Sylvain, 2013. "Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 82-106.
    15. Choi, Soon-Ho, 2017. "Thermal type seawater desalination with barometric vacuum and solar energy," Energy, Elsevier, vol. 141(C), pages 1332-1349.
    16. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    17. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:6-7:p:1437-1445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.