IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i2p812-818.html
   My bibliography  Save this article

Estimation of global solar irradiation on horizontal and inclined surfaces based on the horizontal measurements

Author

Listed:
  • Muzathik, A.M.
  • Ibrahim, M.Z.
  • Samo, K.B.
  • Wan Nik, W.B.

Abstract

Solar radiation data are essential in the design of solar energy conversion devices. In this regard, empirical models were selected to estimate the global solar radiation on horizontal and inclined surfaces. The hourly solar radiation data measured at the study area during the period of 2004–2007, were used to calculate solar radiations using selected models. The selected models were compared on the basis of statistical methods. Based on the results, a new model, H/Ho = 0.19490 + 0.4771(n/N) + 0.02994 exp(n/N) has been developed, based on Kadir Bakirci linear exponential model. This is highly recommended to estimate monthly mean daily global solar irradiation, on a horizontal surface. Further, a model to convert horizontal solar global radiation to that of radiation on a tilted surface is also presented. It is based upon a relatively simple model proposed by Olmo et al. which requires only measurements of horizontal solar radiation. The developed model appears to give excellent results and has the advantage of being relatively simple for applications. The present work will help to improve the state of knowledge of global solar radiation to the point where it has applications in the estimation of global solar radiation, both on horizontal and inclined surfaces.

Suggested Citation

  • Muzathik, A.M. & Ibrahim, M.Z. & Samo, K.B. & Wan Nik, W.B., 2011. "Estimation of global solar irradiation on horizontal and inclined surfaces based on the horizontal measurements," Energy, Elsevier, vol. 36(2), pages 812-818.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:2:p:812-818
    DOI: 10.1016/j.energy.2010.12.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210007255
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.12.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Almorox, J. & Benito, M. & Hontoria, C., 2005. "Estimation of monthly Angström–Prescott equation coefficients from measured daily data in Toledo, Spain," Renewable Energy, Elsevier, vol. 30(6), pages 931-936.
    2. Olmo, F.J & Vida, J & Foyo, I & Castro-Diez, Y & Alados-Arboledas, L, 1999. "Prediction of global irradiance on inclined surfaces from horizontal global irradiance," Energy, Elsevier, vol. 24(8), pages 689-704.
    3. Bakirci, Kadir, 2009. "Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey," Energy, Elsevier, vol. 34(4), pages 485-501.
    4. Bahel, V. & Srinivasan, R. & Bakhsh, H., 1987. "Statistical comparison of correlations for estimation of global horizontal solar radiation," Energy, Elsevier, vol. 12(12), pages 1309-1316.
    5. Rehman, Shafiqur, 1998. "Solar radiation over Saudi Arabia and comparisons with empirical models," Energy, Elsevier, vol. 23(12), pages 1077-1082.
    6. Alnaser, W.E., 1993. "New model to estimate the solar global irradiation using astronomical and meteorological parameters," Renewable Energy, Elsevier, vol. 3(2), pages 175-177.
    7. Ruiz, Enrique & Soler, Alfonso & Robledo, Luis, 2002. "Comparison of the Olmo model with global irradiance measurements on vertical surfaces at Madrid," Energy, Elsevier, vol. 27(10), pages 975-986.
    8. Ampratwum, David B. & Dorvlo, Atsu S. S., 1999. "Estimation of solar radiation from the number of sunshine hours," Applied Energy, Elsevier, vol. 63(3), pages 161-167, July.
    9. Bahel, V., 1987. "Statistical comparison of correlations for estimation of the diffuse fraction of global radiation," Energy, Elsevier, vol. 12(12), pages 1257-1263.
    10. Bahel, V. & Srinivasan, R. & Bakhsh, H., 1986. "Solar radiation for Dhahran, Saudi Arabia," Energy, Elsevier, vol. 11(10), pages 985-989.
    11. Robaa, S.M., 2008. "Evaluation of sunshine duration from cloud data in Egypt," Energy, Elsevier, vol. 33(5), pages 785-795.
    12. Trabea, A.A. & Shaltout, M.A.Mosalam, 2000. "Correlation of global solar radiation with meteorological parameters over Egypt," Renewable Energy, Elsevier, vol. 21(2), pages 297-308.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Besharat, Fariba & Dehghan, Ali A. & Faghih, Ahmad R., 2013. "Empirical models for estimating global solar radiation: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 798-821.
    2. De Giorgi, M.G. & Malvoni, M. & Congedo, P.M., 2016. "Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine," Energy, Elsevier, vol. 107(C), pages 360-373.
    3. Behrang, M.A. & Assareh, E. & Noghrehabadi, A.R. & Ghanbarzadeh, A., 2011. "New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique," Energy, Elsevier, vol. 36(5), pages 3036-3049.
    4. Ayvazoğluyüksel, Özge & Filik, Ümmühan Başaran, 2018. "Estimation methods of global solar radiation, cell temperature and solar power forecasting: A review and case study in Eskişehir," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 639-653.
    5. Jahani, Babak & Dinpashoh, Y. & Raisi Nafchi, Atefeh, 2017. "Evaluation and development of empirical models for estimating daily solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 878-891.
    6. Khorasanizadeh, H. & Mohammadi, K., 2013. "Introducing the best model for predicting the monthly mean global solar radiation over six major cities of Iran," Energy, Elsevier, vol. 51(C), pages 257-266.
    7. Bayrakçı, Hilmi Cenk & Demircan, Cihan & Keçebaş, Ali, 2018. "The development of empirical models for estimating global solar radiation on horizontal surface: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2771-2782.
    8. Tapakis, R. & Charalambides, A.G., 2014. "Enhanced values of global irradiance due to the presence of clouds in Eastern Mediterranean," Renewable Energy, Elsevier, vol. 62(C), pages 459-467.
    9. Akpan, Anthony E. & Ben, Ubong C. & Ekwok, Stephen E. & Okolie, Chukwuma J. & Epuh, Emeka E. & Julzarika, Atriyon & Othman, Abdullah & Eldosouky, Ahmed M., 2024. "Technical and performance assessments of wind turbines in low wind speed areas using numerical, metaheuristic and remote sensing procedures," Applied Energy, Elsevier, vol. 357(C).
    10. Shamshirband, Shahaboddin & Mohammadi, Kasra & Yee, Por Lip & Petković, Dalibor & Mostafaeipour, Ali, 2015. "A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1031-1042.
    11. Ayodele, T.R. & Ogunjuyigbe, A.S.O., 2015. "Prediction of monthly average global solar radiation based on statistical distribution of clearness index," Energy, Elsevier, vol. 90(P2), pages 1733-1742.
    12. Ramon-Marin, Miquel & Sumper, Andreas & Villafafila-Robles, Roberto & Bergas-Jane, Joan, 2014. "Active power estimation of photovoltaic generators for distribution network planning based on correlation models," Energy, Elsevier, vol. 64(C), pages 758-770.
    13. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    14. Notton, Gilles & Paoli, Christophe & Vasileva, Siyana & Nivet, Marie Laure & Canaletti, Jean-Louis & Cristofari, Christian, 2012. "Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks," Energy, Elsevier, vol. 39(1), pages 166-179.
    15. El Ouderni, Ahmed Ridha & Maatallah, Taher & El Alimi, Souheil & Ben Nassrallah, Sassi, 2013. "Experimental assessment of the solar energy potential in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 155-168.
    16. Dahmani, Kahina & Dizene, Rabah & Notton, Gilles & Paoli, Christophe & Voyant, Cyril & Nivet, Marie Laure, 2014. "Estimation of 5-min time-step data of tilted solar global irradiation using ANN (Artificial Neural Network) model," Energy, Elsevier, vol. 70(C), pages 374-381.
    17. Bouazza Fekkak & Mustapha Merzouk & Abdallah Kouzou & Ralph Kennel & Mohamed Abdelrahem & Ahmed Zakane & Mostefa Mohamed-Seghir, 2021. "Comparative Study of Experimentally Measured and Calculated Solar Radiations for Two Sites in Algeria," Energies, MDPI, vol. 14(21), pages 1-25, November.
    18. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    19. Escrig, H. & Batlles, F.J. & Alonso, J. & Baena, F.M. & Bosch, J.L. & Salbidegoitia, I.B. & Burgaleta, J.I., 2013. "Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast," Energy, Elsevier, vol. 55(C), pages 853-859.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    2. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    3. Bakirci, Kadir, 2009. "Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey," Energy, Elsevier, vol. 34(4), pages 485-501.
    4. Besharat, Fariba & Dehghan, Ali A. & Faghih, Ahmad R., 2013. "Empirical models for estimating global solar radiation: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 798-821.
    5. Bakirci, Kadir, 2009. "Models of solar radiation with hours of bright sunshine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2580-2588, December.
    6. Makade, Rahul G. & Jamil, Basharat, 2018. "Statistical analysis of sunshine based global solar radiation (GSR) models for tropical wet and dry climatic Region in Nagpur, India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 22-43.
    7. El Ouderni, Ahmed Ridha & Maatallah, Taher & El Alimi, Souheil & Ben Nassrallah, Sassi, 2013. "Experimental assessment of the solar energy potential in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 155-168.
    8. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2015. "Review and statistical analysis of different global solar radiation sunshine models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1869-1880.
    9. Chen, Ji-Long & He, Lei & Yang, Hong & Ma, Maohua & Chen, Qiao & Wu, Sheng-Jun & Xiao, Zuo-lin, 2019. "Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 91-111.
    10. Mecibah, Mohamed Salah & Boukelia, Taqiy Eddine & Tahtah, Reda & Gairaa, Kacem, 2014. "Introducing the best model for estimation the monthly mean daily global solar radiation on a horizontal surface (Case study: Algeria)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 194-202.
    11. Li, Huashan & Ma, Weibin & Lian, Yongwang & Wang, Xianlong & Zhao, Liang, 2011. "Global solar radiation estimation with sunshine duration in Tibet, China," Renewable Energy, Elsevier, vol. 36(11), pages 3141-3145.
    12. Achour, Lazhar & Bouharkat, Malek & Assas, Ouarda & Behar, Omar, 2017. "Hybrid model for estimating monthly global solar radiation for the Southern of Algeria: (Case study: Tamanrasset, Algeria)," Energy, Elsevier, vol. 135(C), pages 526-539.
    13. Escrig, H. & Batlles, F.J. & Alonso, J. & Baena, F.M. & Bosch, J.L. & Salbidegoitia, I.B. & Burgaleta, J.I., 2013. "Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast," Energy, Elsevier, vol. 55(C), pages 853-859.
    14. Paulescu, M. & Stefu, N. & Calinoiu, D. & Paulescu, E. & Pop, N. & Boata, R. & Mares, O., 2016. "Ångström–Prescott equation: Physical basis, empirical models and sensitivity analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 495-506.
    15. Shamshirband, Shahaboddin & Mohammadi, Kasra & Yee, Por Lip & Petković, Dalibor & Mostafaeipour, Ali, 2015. "A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1031-1042.
    16. Halawa, Edward & GhaffarianHoseini, AmirHosein & Hin Wa Li, Danny, 2014. "Empirical correlations as a means for estimating monthly average daily global radiation: A critical overview," Renewable Energy, Elsevier, vol. 72(C), pages 149-153.
    17. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    18. Prieto, Jesús-Ignacio & García, David, 2022. "Global solar radiation models: A critical review from the point of view of homogeneity and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    19. Shaahid, S.M. & Elhadidy, M.A., 1994. "Wind and solar energy at Dhahran, Saudi Arabia," Renewable Energy, Elsevier, vol. 4(4), pages 441-445.
    20. Behrang, M.A. & Assareh, E. & Noghrehabadi, A.R. & Ghanbarzadeh, A., 2011. "New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique," Energy, Elsevier, vol. 36(5), pages 3036-3049.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:2:p:812-818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.