IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i2p1124-1133.html
   My bibliography  Save this article

Technologies for increasing CO2 concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO2 capture

Author

Listed:
  • Li, Hailong
  • Ditaranto, Mario
  • Berstad, David

Abstract

Enhanced CO2 concentration in exhaust gas is regarded as a potentially effective method to reduce the high electrical efficiency penalty caused by CO2 chemical absorption in post-combustion capture systems. The present work evaluates the effect of increasing CO2 concentration in the exhaust gas of gas turbine based power plant by four different methods: exhaust gas recirculation (EGR), humidification (EvGT), supplementary firing (SFC) and external firing (EFC). Efforts have been focused on the impacts on cycle efficiency, combustion, gas turbine components, and cost. The results show that the combined cycle with EGR has the capability to change the molar fraction of CO2 with the largest range, from 3.8 mol% to at least 10 mol%, and with the highest electrical efficiency. The EvGT cycle has relatively low additional cost impact as it does not require any bottoming cycle. The externally fired method was found to have the minimum impacts on both combustion and turbomachinery.

Suggested Citation

  • Li, Hailong & Ditaranto, Mario & Berstad, David, 2011. "Technologies for increasing CO2 concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO2 capture," Energy, Elsevier, vol. 36(2), pages 1124-1133.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1124-1133
    DOI: 10.1016/j.energy.2010.11.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210006857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.11.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonsson, Maria & Yan, Jinyue, 2005. "Humidified gas turbines—a review of proposed and implemented cycles," Energy, Elsevier, vol. 30(7), pages 1013-1078.
    2. Chacartegui, R. & Sánchez, D. & Muñoz, J.M. & Sánchez, T., 2009. "Alternative ORC bottoming cycles FOR combined cycle power plants," Applied Energy, Elsevier, vol. 86(10), pages 2162-2170, October.
    3. Kvamsdal, Hanne M. & Jordal, Kristin & Bolland, Olav, 2007. "A quantitative comparison of gas turbine cycles with CO2 capture," Energy, Elsevier, vol. 32(1), pages 10-24.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    2. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    3. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    4. Lai, Ngoc Anh & Wendland, Martin & Fischer, Johann, 2011. "Working fluids for high-temperature organic Rankine cycles," Energy, Elsevier, vol. 36(1), pages 199-211.
    5. Anwar Hamdan Al Assaf & Abdulkarem Amhamed & Odi Fawwaz Alrebei, 2022. "State of the Art in Humidified Gas Turbine Configurations," Energies, MDPI, vol. 15(24), pages 1-32, December.
    6. Golonis, Chrysanthos & Skiadopoulos, Anastasios & Manolakos, Dimitris & Kosmadakis, George, 2021. "Assessment of the performance of a low-temperature Organic Rankine Cycle engine coupled with a concentrating PV-Thermal system," Renewable Energy, Elsevier, vol. 179(C), pages 1085-1097.
    7. Chacartegui, R. & Sánchez, D. & Muñoz, J.M. & Sánchez, T., 2009. "Alternative ORC bottoming cycles FOR combined cycle power plants," Applied Energy, Elsevier, vol. 86(10), pages 2162-2170, October.
    8. Guerra, Omar J. & Reklaitis, Gintaras V., 2018. "Advances and challenges in water management within energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4009-4019.
    9. Luo, Chending & Zhang, Na, 2012. "Zero CO2 emission SOLRGT power system," Energy, Elsevier, vol. 45(1), pages 312-323.
    10. Klonowicz, Piotr & Heberle, Florian & Preißinger, Markus & Brüggemann, Dieter, 2014. "Significance of loss correlations in performance prediction of small scale, highly loaded turbine stages working in Organic Rankine Cycles," Energy, Elsevier, vol. 72(C), pages 322-330.
    11. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).
    12. Mahdi Deymi-Dashtebayaz & Parisa Kazemiani-Najafabad, 2019. "Energy, Exergy, Economic, and Environmental analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery," Energy & Environment, , vol. 30(3), pages 481-498, May.
    13. Peymani, Alireza & Sadeghi, Jafar & Shahraki, Farhad & Samimi, Abdolreza, 2022. "Connection a vapor jet refrigeration system to a steam injected gas turbine," Energy, Elsevier, vol. 261(PA).
    14. Xu, Shunta & Xi, Liyang & Tian, Songjie & Tu, Yaojie & Chen, Sheng & Zhang, Shihong & Liu, Hao, 2023. "Numerical investigation of pressure and H2O dilution effects on NO formation and reduction pathways in pure hydrogen MILD combustion," Applied Energy, Elsevier, vol. 350(C).
    15. Turi, Davide Maria & Chiesa, Paolo & Macchi, Ennio & Ghoniem, Ahmed F., 2016. "High fidelity model of the oxygen flux across ion transport membrane reactor: Mechanism characterization using experimental data," Energy, Elsevier, vol. 96(C), pages 127-141.
    16. Martelli, Emanuele & Nord, Lars O. & Bolland, Olav, 2012. "Design criteria and optimization of heat recovery steam cycles for integrated reforming combined cycles with CO2 capture," Applied Energy, Elsevier, vol. 92(C), pages 255-268.
    17. Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.
    18. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    19. Marta Muñoz & Antonio Rovira & María José Montes, 2022. "Thermodynamic cycles for solar thermal power plants: A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(2), March.
    20. Bao, Junjiang & Zhao, Li, 2012. "Exergy analysis and parameter study on a novel auto-cascade Rankine cycle," Energy, Elsevier, vol. 48(1), pages 539-547.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1124-1133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.