IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i10p5954-5967.html
   My bibliography  Save this article

Energy and exergy utilization, and carbon dioxide emission in vegetable oil production

Author

Listed:
  • Özilgen, Mustafa
  • Sorgüven, Esra

Abstract

Energy and exergy utilization and carbon dioxide emission during production of soybean, sunflower, and olive oils are assessed. In all cases, agriculture is the most energy and exergy intensive process and emits most of the carbon dioxide, and diesel is the dominant energy and exergy source. The cumulative degree of perfection (CDP) for soybean and olive oil is 0.92 and 0.98, respectively, whereas the CDP for the sunflower oil is 2.36. Decreasing diesel consumption with good agricultural practices and substituting with biodiesel from renewable resources would decrease the cumulative exergy consumption, as a result, CDP of olive and soybean oil rises to 1.6 and sunflower oil to 2.9.

Suggested Citation

  • Özilgen, Mustafa & Sorgüven, Esra, 2011. "Energy and exergy utilization, and carbon dioxide emission in vegetable oil production," Energy, Elsevier, vol. 36(10), pages 5954-5967.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:10:p:5954-5967
    DOI: 10.1016/j.energy.2011.08.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211005500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.08.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Talens, Laura & Villalba, Gara & Gabarrell, Xavier, 2007. "Exergy analysis applied to biodiesel production," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 397-407.
    2. Ptasinski, Krzysztof J. & Prins, Mark J. & Pierik, Anke, 2007. "Exergetic evaluation of biomass gasification," Energy, Elsevier, vol. 32(4), pages 568-574.
    3. Ayres, Robert U., 1998. "Eco-thermodynamics: economics and the second law," Ecological Economics, Elsevier, vol. 26(2), pages 189-209, August.
    4. Fadare, D.A. & Bamiro, O.A. & Oni, A.O., 2010. "Energy and cost analysis of organic fertilizer production in Nigeria," Energy, Elsevier, vol. 35(1), pages 332-340.
    5. Ramírez, C.A. & Patel, M. & Blok, K., 2006. "From fluid milk to milk powder: Energy use and energy efficiency in the European dairy industry," Energy, Elsevier, vol. 31(12), pages 1984-2004.
    6. Xu, Tengfang & Flapper, Joris & Kramer, Klaas Jan, 2009. "Characterization of energy use and performance of global cheese processing," Energy, Elsevier, vol. 34(11), pages 1993-2000.
    7. Zhang, M. & Li, G. & Mu, H.L. & Ning, Y.D., 2011. "Energy and exergy efficiencies in the Chinese transportation sector, 1980–2009," Energy, Elsevier, vol. 36(2), pages 770-776.
    8. Caton, Jerald A, 2000. "On the destruction of availability (exergy) due to combustion processes — with specific application to internal-combustion engines," Energy, Elsevier, vol. 25(11), pages 1097-1117.
    9. Talens Peiró, L. & Villalba Méndez, G. & Sciubba, E. & Gabarrell i Durany, X., 2010. "Extended exergy accounting applied to biodiesel production," Energy, Elsevier, vol. 35(7), pages 2861-2869.
    10. Kapustenko, Petro O. & Ulyev, Leonid M. & Boldyryev, Stanislav A. & Garev, Andrey O., 2008. "Integration of a heat pump into the heat supply system of a cheese production plant," Energy, Elsevier, vol. 33(6), pages 882-889.
    11. Esengun, Kemal & Erdal, Gülistan & Gündüz, Orhan & Erdal, Hilmi, 2007. "An economic analysis and energy use in stake-tomato production in Tokat province of Turkey," Renewable Energy, Elsevier, vol. 32(11), pages 1873-1881.
    12. Erdal, Gülistan & Esengün, Kemal & Erdal, Hilmi & Gündüz, Orhan, 2007. "Energy use and economical analysis of sugar beet production in Tokat province of Turkey," Energy, Elsevier, vol. 32(1), pages 35-41.
    13. Ramírez, C.A. & Patel, M. & Blok, K., 2006. "How much energy to process one pound of meat? A comparison of energy use and specific energy consumption in the meat industry of four European countries," Energy, Elsevier, vol. 31(12), pages 2047-2063.
    14. Sorguven, Esra & Özilgen, Mustafa, 2010. "Thermodynamic assessment of algal biodiesel utilization," Renewable Energy, Elsevier, vol. 35(9), pages 1956-1966.
    15. De, Dipankar & Singh, R. S. & Chandra, Hukum, 2001. "Technological impact on energy consumption in rainfed soybean cultivation in Madhya Pradesh," Applied Energy, Elsevier, vol. 70(3), pages 193-213, November.
    16. Talens Peiró, L. & Lombardi, L. & Villalba Méndez, G. & Gabarrell i Durany, X., 2010. "Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO)," Energy, Elsevier, vol. 35(2), pages 889-893.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nakhaii, Fatemeh & Ghanbari, Seyed Ahmad & Asgharipour, Mohammad Reza & Seyedabadi, Esmaeel & Sciubba, Enrico, 2024. "Evaluating ecological sustainability of mechanized and traditional systems of damaskrose production using extended exergy analysis," Ecological Modelling, Elsevier, vol. 488(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karakaya, Ahmet & Özilgen, Mustafa, 2011. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes," Energy, Elsevier, vol. 36(8), pages 5101-5110.
    2. Sorgüven, Esra & Özilgen, Mustafa, 2012. "Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process," Energy, Elsevier, vol. 40(1), pages 214-225.
    3. Nunes, J. & Silva, Pedro D. & Andrade, L.P. & Gaspar, Pedro D., 2016. "Key points on the energy sustainable development of the food industry – Case study of the Portuguese sausages industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 393-411.
    4. Kuswardhani, Nita & Soni, Peeyush & Shivakoti, Ganesh P., 2013. "Comparative energy input–output and financial analyses of greenhouse and open field vegetables production in West Java, Indonesia," Energy, Elsevier, vol. 53(C), pages 83-92.
    5. Dhayaneswaran, Y. & Ashok Kumar, L., 2014. "A study on current characteristics of induction motor while operating at its base frequency in textile industry," Energy, Elsevier, vol. 74(C), pages 340-345.
    6. Mohammadi, Ali & Omid, Mahmoud, 2010. "Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran," Applied Energy, Elsevier, vol. 87(1), pages 191-196, January.
    7. Saidur, R. & BoroumandJazi, G. & Mekhilef, S. & Mohammed, H.A., 2012. "A review on exergy analysis of biomass based fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1217-1222.
    8. Palamutcu, S., 2010. "Electric energy consumption in the cotton textile processing stages," Energy, Elsevier, vol. 35(7), pages 2945-2952.
    9. Velásquez, H.I. & De Oliveira, S. & Benjumea, P. & Pellegrini, L.F., 2013. "Exergo-environmental evaluation of liquid biofuel production processes," Energy, Elsevier, vol. 54(C), pages 97-103.
    10. Giacone, E. & Mancò, S., 2012. "Energy efficiency measurement in industrial processes," Energy, Elsevier, vol. 38(1), pages 331-345.
    11. Samavatean, Naeimeh & Rafiee, Shahin & Mobli, Hossein & Mohammadi, Ali, 2011. "An analysis of energy use and relation between energy inputs and yield, costs and income of garlic production in Iran," Renewable Energy, Elsevier, vol. 36(6), pages 1808-1813.
    12. Velásquez-Arredondo, H.I. & De Oliveira Junior, S. & Benjumea, P., 2012. "Exergy efficiency analysis of chemical and biochemical stages involved in liquid biofuels production processes," Energy, Elsevier, vol. 41(1), pages 138-145.
    13. Sorgüven, Esra & Özilgen, Mustafa, 2013. "Thermodynamic efficiency of synthesis, storage and breakdown of the high-energy metabolites by photosynthetic microalgae," Energy, Elsevier, vol. 58(C), pages 679-687.
    14. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    15. Ali Mostafaeipour & Mohammad Bagher Fakhrzad & Sajad Gharaat & Mehdi Jahangiri & Joshuva Arockia Dhanraj & Shahab S. Band & Alibek Issakhov & Amir Mosavi, 2020. "Machine Learning for Prediction of Energy in Wheat Production," Agriculture, MDPI, vol. 10(11), pages 1-19, October.
    16. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    17. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Mousavi Avval, Seyed Hashem & Rafiee, Hamed, 2011. "Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach," Renewable Energy, Elsevier, vol. 36(9), pages 2573-2579.
    18. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    19. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    20. Fadavi, Raheleh & Samavatean, Naiemeh & Keyhani, Alireza & Saied, Seyyed, 2012. "An Analysis of Improving Energy use with Data Envelopment Analysis in Apple Orchard," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 2(02), pages 1-11, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:10:p:5954-5967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.