IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v488y2024ics0304380023003253.html
   My bibliography  Save this article

Evaluating ecological sustainability of mechanized and traditional systems of damaskrose production using extended exergy analysis

Author

Listed:
  • Nakhaii, Fatemeh
  • Ghanbari, Seyed Ahmad
  • Asgharipour, Mohammad Reza
  • Seyedabadi, Esmaeel
  • Sciubba, Enrico

Abstract

Environmental resource efficiency is a major challenge in the management of agroecosystems and their sustainability. The Extended Exergy Analysis (EEA) is a novel approach that assesses the total amount of resources extracted from the environment to produce agroecosystem products. This study applied the EEA to compare the sustainable development of Damask rose flower production in two mechanized and traditional systems in Nehbandan County, South Khorasan province, using the data of 2021–2022. The EEA calculated the flows of labor, capital, and environmental costs in the systems based on the first and second thermodynamic laws. The results showed that the traditional system had lower cumulative exergy consumption (CExC) and environmental modification cost than the mechanized system, indicating higher ecological sustainability. The extended exergy indices, such as the special capital conversion of energy and material input (kcap), the special capital conversion of product sale (KCAPEEA), extended exergy cost (eec) and the cumulative degree of perfection (CDP), also revealed that the traditional system was more cost-effective, economical, technologically efficient, and closer to the optimal conditions than the mechanized system. To achieve a sustainable agricultural crop production system, new patterns and models for selecting inputs and reducing environmental costs are recommended.

Suggested Citation

  • Nakhaii, Fatemeh & Ghanbari, Seyed Ahmad & Asgharipour, Mohammad Reza & Seyedabadi, Esmaeel & Sciubba, Enrico, 2024. "Evaluating ecological sustainability of mechanized and traditional systems of damaskrose production using extended exergy analysis," Ecological Modelling, Elsevier, vol. 488(C).
  • Handle: RePEc:eee:ecomod:v:488:y:2024:i:c:s0304380023003253
    DOI: 10.1016/j.ecolmodel.2023.110595
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023003253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yildizhan, Hasan, 2018. "Energy, exergy utilization and CO2 emission of strawberry production in greenhouse and open field," Energy, Elsevier, vol. 143(C), pages 417-423.
    2. Alfonso Biondi & Enrico Sciubba, 2021. "Extended Exergy Analysis (EEA) of Italy, 2013–2017," Energies, MDPI, vol. 14(10), pages 1-21, May.
    3. Özilgen, Mustafa & Sorgüven, Esra, 2011. "Energy and exergy utilization, and carbon dioxide emission in vegetable oil production," Energy, Elsevier, vol. 36(10), pages 5954-5967.
    4. Szargut, Jan, 1989. "Chemical exergies of the elements," Applied Energy, Elsevier, vol. 32(4), pages 269-286.
    5. Schaeffer, Roberto & Wirtshafter, Robert M., 1992. "An exergy analysis of the Brazilian economy: From energy production to final energy use," Energy, Elsevier, vol. 17(9), pages 841-855.
    6. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
    7. Rocco, M.V. & Colombo, E. & Sciubba, E., 2014. "Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method," Applied Energy, Elsevier, vol. 113(C), pages 1405-1420.
    8. Amiri, Zahra & Asgharipour, Mohammad Reza & Campbell, Daniel E. & Armin, Mohammad, 2020. "Extended exergy analysis (EAA) of two canola farming systems in Khorramabad, Iran," Agricultural Systems, Elsevier, vol. 180(C).
    9. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    10. Rosen, M.A., 1992. "Evaluation of energy utilization efficiency in Canada using energy and exergy analyses," Energy, Elsevier, vol. 17(4), pages 339-350.
    11. Sciubba, Enrico, 2019. "Exergy-based ecological indicators: From Thermo-Economics to cumulative exergy consumption to Thermo-Ecological Cost and Extended Exergy Accounting," Energy, Elsevier, vol. 168(C), pages 462-476.
    12. Sciubba, Enrico, 2003. "Cost analysis of energy conversion systems via a novel resource-based quantifier," Energy, Elsevier, vol. 28(5), pages 457-477.
    13. Esteban F. Durán-Lara & Aly Valderrama & Adolfo Marican, 2020. "Natural Organic Compounds for Application in Organic Farming," Agriculture, MDPI, vol. 10(2), pages 1-22, February.
    14. Yildizhan, Hasan & Taki, Morteza, 2018. "Assessment of tomato production process by cumulative exergy consumption approach in greenhouse and open field conditions: Case study of Turkey," Energy, Elsevier, vol. 156(C), pages 401-408.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi, Mohammad Mahdi & Keyhani, Alireza & Rosen, Marc A. & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Towards sustainable net-zero districts using the extended exergy accounting concept," Renewable Energy, Elsevier, vol. 197(C), pages 747-764.
    2. Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
    3. Chen, B. & Chen, G.Q., 2007. "Modified ecological footprint accounting and analysis based on embodied exergy--a case study of the Chinese society 1981-2001," Ecological Economics, Elsevier, vol. 61(2-3), pages 355-376, March.
    4. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    5. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    6. Amiri, Zahra & Asgharipour, Mohammad Reza & Campbell, Daniel E. & Armin, Mohammad, 2020. "Extended exergy analysis (EAA) of two canola farming systems in Khorramabad, Iran," Agricultural Systems, Elsevier, vol. 180(C).
    7. Seckin, C. & Sciubba, E. & Bayulken, A.R., 2012. "An application of the extended exergy accounting method to the Turkish society, year 2006," Energy, Elsevier, vol. 40(1), pages 151-163.
    8. Chen, B. & Chen, G.Q., 2006. "Exergy analysis for resource conversion of the Chinese Society 1993 under the material product system," Energy, Elsevier, vol. 31(8), pages 1115-1150.
    9. Ricardo Manso & Tânia Sousa & Tiago Domingos, 2018. "The Way Forward in Quantifying Extended Exergy Efficiency," Energies, MDPI, vol. 11(10), pages 1-32, September.
    10. Chen, G.Q. & Chen, B., 2007. "Resource analysis of the Chinese society 1980-2002 based on exergy--Part 1: Fossil fuels and energy minerals," Energy Policy, Elsevier, vol. 35(4), pages 2038-2050, April.
    11. Ertesvåg, Ivar S & Mielnik, Michal, 2000. "Exergy analysis of the Norwegian society," Energy, Elsevier, vol. 25(10), pages 957-973.
    12. Chen, G.Q. & Chen, B., 2007. "Resource analysis of the Chinese society 1980-2002 based on energy--Part 5: Resource structure and intensity," Energy Policy, Elsevier, vol. 35(4), pages 2087-2095, April.
    13. Chen, G.Q. & Jiang, M.M. & Yang, Z.F. & Chen, B. & Ji, Xi & Zhou, J.B., 2009. "Exergetic assessment for ecological economic system: Chinese agriculture," Ecological Modelling, Elsevier, vol. 220(3), pages 397-410.
    14. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
    15. Chen, B. & Chen, G.Q., 2007. "Resource analysis of the Chinese society 1980-2002 based on exergy--Part 3: Agricultural products," Energy Policy, Elsevier, vol. 35(4), pages 2065-2078, April.
    16. Saidur, R. & Sattar, M.A. & Masjuki, H.H. & Abdessalam, H. & Shahruan, B.S., 2007. "Energy and exergy analysis at the utility and commercial sectors of Malaysia," Energy Policy, Elsevier, vol. 35(3), pages 1956-1966, March.
    17. Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.
    18. Al-Ghandoor, A. & Phelan, P.E. & Villalobos, R. & Jaber, J.O., 2010. "Energy and exergy utilizations of the U.S. manufacturing sector," Energy, Elsevier, vol. 35(7), pages 3048-3065.
    19. Chen, B. & Chen, G.Q., 2007. "Resource analysis of the Chinese society 1980-2002 based on exergy--Part 4: Fishery and rangeland," Energy Policy, Elsevier, vol. 35(4), pages 2079-2086, April.
    20. Fatemeh Nadi & Krzysztof Górnicki, 2022. "Evaluation of Sustainability of Wheat-Bread Chain Based on the Second Law of Thermodynamics: A Case Study," Sustainability, MDPI, vol. 14(21), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:488:y:2024:i:c:s0304380023003253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.