IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i1p332-340.html
   My bibliography  Save this article

Energy and cost analysis of organic fertilizer production in Nigeria

Author

Listed:
  • Fadare, D.A.
  • Bamiro, O.A.
  • Oni, A.O.

Abstract

Energy study was conducted in an organic fertilizer production plant in Nigeria, to determine the energy consumption patterns and the associated costs for the production of both powdered and pelletised fertilizer. Analysis was conducted for a daily production of 9000kg of the finished products. Eight and nine defined unit operations were required for production of powder and pellets, respectively. The electrical and manual energy required for the production of powder were 94.5 and 5.6% of the total energy, respectively, with corresponding 93.9 and 5.1% for the production of pellets. The respective average energy intensities were estimated as 0.28 and 0.35MJ/kg for powder and pellets. The most energy intensive operation was identified as the pulverizing unit with energy intensity of 0.09MJ/kg, accounting for respective proportions of 33.4 and 27.0% of the total energy for production of powder and pellets. The energy cost per unit production for powdered and pelletised fertilizer using generator were evaluated as ₦2.92 ($0.021) and ₦3.87 ($0.028), respectively, with corresponding values of ₦1.65 ($0.012) and ₦2.00 ($0.014) when electrical energy from the national grid was used. The energy intensities for the production of organic fertilizers were significantly lower than that of inorganic fertilizers.

Suggested Citation

  • Fadare, D.A. & Bamiro, O.A. & Oni, A.O., 2010. "Energy and cost analysis of organic fertilizer production in Nigeria," Energy, Elsevier, vol. 35(1), pages 332-340.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:1:p:332-340
    DOI: 10.1016/j.energy.2009.09.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054420900423X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.09.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Waheed, M.A. & Jekayinfa, S.O. & Ojediran, J.O. & Imeokparia, O.E., 2008. "Energetic analysis of fruit juice processing operations in Nigeria," Energy, Elsevier, vol. 33(1), pages 35-45.
    2. Jekayinfa, S.O. & Bamgboye, A.I., 2006. "Estimating energy requirement in cashew (Anacardium occidentale L.) nut processing operations," Energy, Elsevier, vol. 31(8), pages 1305-1320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fadare, D.A. & Nkpubre, D.O. & Oni, A.O. & Falana, A. & Waheed, M.A. & Bamiro, O.A., 2010. "Energy and exergy analyses of malt drink production in Nigeria," Energy, Elsevier, vol. 35(12), pages 5336-5346.
    2. Özilgen, Mustafa & Sorgüven, Esra, 2011. "Energy and exergy utilization, and carbon dioxide emission in vegetable oil production," Energy, Elsevier, vol. 36(10), pages 5954-5967.
    3. Jing An & Aitian Tao & He Yang & Ang Tian, 2021. "Sustainability Assessment of the Rare-Earth-Oxide Production Process and Comparison of Environmental Performance Improvements Based on Emergy Analysis," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
    4. Schramski, J.R. & Jacobsen, K.L. & Smith, T.W. & Williams, M.A. & Thompson, T.M., 2013. "Energy as a potential systems-level indicator of sustainability in organic agriculture: Case study model of a diversified, organic vegetable production system," Ecological Modelling, Elsevier, vol. 267(C), pages 102-114.
    5. Rebeka Pajura & Adam Masłoń & Joanna Czarnota, 2023. "The Use of Waste to Produce Liquid Fertilizers in Terms of Sustainable Development and Energy Consumption in the Fertilizer Industry—A Case Study from Poland," Energies, MDPI, vol. 16(4), pages 1-24, February.
    6. Yildizhan, Hasan, 2018. "Energy, exergy utilization and CO2 emission of strawberry production in greenhouse and open field," Energy, Elsevier, vol. 143(C), pages 417-423.
    7. Karakaya, Ahmet & Özilgen, Mustafa, 2011. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes," Energy, Elsevier, vol. 36(8), pages 5101-5110.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fadare, D.A. & Nkpubre, D.O. & Oni, A.O. & Falana, A. & Waheed, M.A. & Bamiro, O.A., 2010. "Energy and exergy analyses of malt drink production in Nigeria," Energy, Elsevier, vol. 35(12), pages 5336-5346.
    2. Jekayinfa, S.O. & Bamgboye, A.I., 2008. "Energy use analysis of selected palm-kernel oil mills in south western Nigeria," Energy, Elsevier, vol. 33(1), pages 81-90.
    3. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    4. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    5. Koppar, Abhay & Pullammanappallil, Pratap, 2013. "Anaerobic digestion of peel waste and wastewater for on site energy generation in a citrus processing facility," Energy, Elsevier, vol. 60(C), pages 62-68.
    6. Dhayaneswaran, Y. & Ashok Kumar, L., 2014. "A study on current characteristics of induction motor while operating at its base frequency in textile industry," Energy, Elsevier, vol. 74(C), pages 340-345.
    7. Sogut, Z. & Ilten, N. & Oktay, Z., 2010. "Energetic and exergetic performance evaluation of the quadruple-effect evaporator unit in tomato paste production," Energy, Elsevier, vol. 35(9), pages 3821-3826.
    8. Mojarab Soufiyan, Mohamad & Dadak, Ali & Hosseini, Seyed Sina & Nasiri, Farshid & Dowlati, Majid & Tahmasebi, Maryam & Aghbashlo, Mortaza, 2016. "Comprehensive exergy analysis of a commercial tomato paste plant with a double-effect evaporator," Energy, Elsevier, vol. 111(C), pages 910-922.
    9. Dowlati, Majid & Aghbashlo, Mortaza & Mojarab Soufiyan, Mohamad, 2017. "Exergetic performance analysis of an ice-cream manufacturing plant: A comprehensive survey," Energy, Elsevier, vol. 123(C), pages 445-459.
    10. Palamutcu, S., 2010. "Electric energy consumption in the cotton textile processing stages," Energy, Elsevier, vol. 35(7), pages 2945-2952.
    11. Jekayinfa, S.O. & Adebayo, A.O. & Afolayan, S.O. & Daramola, E., 2013. "On-farm energetics of mango production in Nigeria," Renewable Energy, Elsevier, vol. 51(C), pages 60-63.
    12. Stamp, Jane & Majozi, Thokozani, 2011. "Optimum heat storage design for heat integrated multipurpose batch plants," Energy, Elsevier, vol. 36(8), pages 5119-5131.
    13. Singh, Gurjeet & Singh, P.J. & Tyagi, V.V. & Barnwal, P. & Pandey, A.K., 2019. "Exergy and thermo-economic analysis of ghee production plant in dairy industry," Energy, Elsevier, vol. 167(C), pages 602-618.
    14. Hatem Oueslati & Salah Ben Mabrouk & Abdelkader Mami, 2021. "Dynamic Modelling and Performance Optimization-Based Sliding Mode Control of Process Drying in a Convective Tunnel Dryer," International Journal of System Dynamics Applications (IJSDA), IGI Global, vol. 10(4), pages 1-26, October.
    15. Philipp, Matthias & Schumm, Gregor & Heck, Patrick & Schlosser, Florian & Peesel, Ron-Hendrik & Walmsley, Timothy G. & Atkins, Martin J., 2018. "Increasing energy efficiency of milk product batch sterilisation," Energy, Elsevier, vol. 164(C), pages 995-1010.
    16. Germina Giagnacovo & Arianna Latini & Alessandro Albanese & Alessandro Campiotti & Joaqu?n Fuentes-Pila, 2019. ""Value Stream Map" and energy consumption in agro-industrial juice fruit processing," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 Suppl.), pages 127-142.
    17. Jafaryani Jokandan, Majid & Aghbashlo, Mortaza & Mohtasebi, Seyed Saeid, 2015. "Comprehensive exergy analysis of an industrial-scale yogurt production plant," Energy, Elsevier, vol. 93(P2), pages 1832-1851.
    18. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto, 2017. "Thermodynamic sensitivity analysis of a novel trigeneration thermodynamic cycle with two-phase expanders and two-phase compressors," Energy, Elsevier, vol. 127(C), pages 335-350.
    19. Waheed, M.A. & Jekayinfa, S.O. & Ojediran, J.O. & Imeokparia, O.E., 2008. "Energetic analysis of fruit juice processing operations in Nigeria," Energy, Elsevier, vol. 33(1), pages 35-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:1:p:332-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.