IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v21y2010i8p925-936.html
   My bibliography  Save this article

The Impact of Carbon Capture and Storage on Coal Resource Depletion

Author

Listed:
  • Edward H Owens
  • Samuel Chapman
  • Paul Allan

Abstract

Carbon Capture and Storage is being actively developed for deployment in fossil fuel power stations in an attempt to reduce future emissions of CO2 due to concerns about climate change. The deployment of this technology will cause an inevitable reduction in the overall efficiency of any electricity generation plant leading to an increase in demand for the fossil fuels used to power the generation process. This paper estimates the average reduction in generation efficiency caused by the imposition of Carbon Capture and Storage and considers its effects upon the depletion rate of global coal reserves. Future production of coal is modelled using a symmetrical production curve. The results suggest that the widespread adoption of Carbon Capture and Storage may result in the exhaustion of coal reserves several decades in advance of when this may happen if CCS is not deployed.

Suggested Citation

  • Edward H Owens & Samuel Chapman & Paul Allan, 2010. "The Impact of Carbon Capture and Storage on Coal Resource Depletion," Energy & Environment, , vol. 21(8), pages 925-936, December.
  • Handle: RePEc:sae:engenv:v:21:y:2010:i:8:p:925-936
    DOI: 10.1260/0958-305X.21.8.925
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1260/0958-305X.21.8.925
    Download Restriction: no

    File URL: https://libkey.io/10.1260/0958-305X.21.8.925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tzimas, Evangelos & Peteves, Stathis D., 2005. "The impact of carbon sequestration on the production cost of electricity and hydrogen from coal and natural-gas technologies in Europe in the medium term," Energy, Elsevier, vol. 30(14), pages 2672-2689.
    2. McCollum, David L & Ogden, Joan M, 2006. "Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity," Institute of Transportation Studies, Working Paper Series qt1zg00532, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verma, Aman & Kumar, Amit, 2015. "Life cycle assessment of hydrogen production from underground coal gasification," Applied Energy, Elsevier, vol. 147(C), pages 556-568.
    2. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    3. repec:fpb:wpaper:102 is not listed on IDEAS
    4. Eric Saffou & Arshad Raza & Raoof Gholami & Ciriako Aci & Jan van Bever Donker & Sofyan Salem & Udo Zimmermann & Mimonitu Opuwari & Leon Croukamp & Walter Romaric Elingou & Tapas Chatterjee & Musa S.D, 2022. "Full‐scale simulation of a nearly depleted gas field in South Africa for carbon utilisation and storage," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(4), pages 486-507, August.
    5. Tzimas, Evangelos & Mercier, Arnaud & Cormos, Calin-Cristian & Peteves, Stathis D., 2007. "Trade-off in emissions of acid gas pollutants and of carbon dioxide in fossil fuel power plants with carbon capture," Energy Policy, Elsevier, vol. 35(8), pages 3991-3998, August.
    6. Zeng, Bingxin & Zhu, Lei & Yao, Xing, 2020. "Policy choice for end-of-pipe abatement technology adoption under technological uncertainty," Economic Modelling, Elsevier, vol. 87(C), pages 121-130.
    7. Matovic, Darko, 2011. "Biochar as a viable carbon sequestration option: Global and Canadian perspective," Energy, Elsevier, vol. 36(4), pages 2011-2016.
    8. Günther, Philipp & Ekardt, Felix, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(12), pages 1-29.
    9. Aguilera, Roberto F., 2010. "The future of the European natural gas market: A quantitative assessment," Energy, Elsevier, vol. 35(8), pages 3332-3339.
    10. Singh, A.K. & Goerke, U.-J. & Kolditz, O., 2011. "Numerical simulation of non-isothermal compositional gas flow: Application to carbon dioxide injection into gas reservoirs," Energy, Elsevier, vol. 36(5), pages 3446-3458.
    11. Lei Zhu & Xin Liu, 2015. "Promoting the Carbon Removal in Coal Utilization-A Benefit-Risk Analysis among Full-Chain Carbon Capture and Utilization Project," Energy & Environment, , vol. 26(6-7), pages 1035-1053, November.
    12. Yao, Xing & Fan, Ying & Zhu, Lei & Zhang, Xian, 2020. "Optimization of dynamic incentive for the deployment of carbon dioxide removal technology: A nonlinear dynamic approach combined with real options," Energy Economics, Elsevier, vol. 86(C).
    13. Sara Restrepo-Valencia & Arnaldo Walter, 2019. "Techno-Economic Assessment of Bio-Energy with Carbon Capture and Storage Systems in a Typical Sugarcane Mill in Brazil," Energies, MDPI, vol. 12(6), pages 1-13, March.
    14. Yao, Xing & Zhong, Ping & Zhang, Xian & Zhu, Lei, 2018. "Business model design for the carbon capture utilization and storage (CCUS) project in China," Energy Policy, Elsevier, vol. 121(C), pages 519-533.
    15. Sun, Bo & Fan, Boyang & Wu, Chun & Xie, Jingdong, 2024. "Exploring incentive mechanisms for the CCUS project in China's coal-fired power plants: An option-game approach," Energy, Elsevier, vol. 288(C).
    16. Tayari, Farid & Blumsack, Seth, 2020. "A real options approach to production and injection timing under uncertainty for CO2 sequestration in depleted shale gas reservoirs," Applied Energy, Elsevier, vol. 263(C).
    17. Iloeje, Chukwunwike O. & Zhao, Zhenlong & Ghoniem, Ahmed F., 2018. "Design and techno-economic optimization of a rotary chemical looping combustion power plant with CO2 capture," Applied Energy, Elsevier, vol. 231(C), pages 1179-1190.
    18. Danielle Devogelaer & Dominique Gusbin, 2007. "Planning Paper 102 - Energievooruitzichten voor België tegen 2030 in een tijdperk van klimaatverandering [Planning Paper 102 - Perspectives énergétiques pour la Belgique à l’horizon 2030 dans ," Planning Papers 102, Federal Planning Bureau, Belgium.
    19. Nakaten, Natalie & Schlüter, Ralph & Azzam, Rafig & Kempka, Thomas, 2014. "Development of a techno-economic model for dynamic calculation of cost of electricity, energy demand and CO2 emissions of an integrated UCG–CCS process," Energy, Elsevier, vol. 66(C), pages 779-790.
    20. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
    21. Menegaki, Angeliki N. & Tsagarakis, Konstantinos P., 2015. "Rich enough to go renewable, but too early to leave fossil energy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1465-1477.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:21:y:2010:i:8:p:925-936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.