IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i7p3103-3108.html
   My bibliography  Save this article

Thermodynamic and kinetic model of reforming coke-oven gas with steam

Author

Listed:
  • Zhang, Jiayuan
  • Zhang, Xiaohui
  • Chen, Zhuo
  • Li, Li

Abstract

The experiments of reforming the methane of coke-oven gas with steam were performed. The effects of the thermodynamic factors, such as the H2O/CH4 ratio, the conversion temperature (T) of methane and the reaction time (t), on the methane conversion rate have been investigated. The experimental results show that the H2O/CH4 ratio within the range of 1.1–1.3 and the temperature 1223–1273K are the reasonable thermodynamic conditions for methane conversion. A methane conversion of more than 95% can be achieved when the H2O/CH4 ratio is 1.2, the conversion temperature is above 1223K and the conversion time is up to 15s respectively. In additional, kinetic data of different reaction conditions were measured, and a dynamic model of methane conversion was proposed and verified. All results demonstrated that the results of the dynamic models agree well with the experiments, of which the deviation is less than 1.5%.

Suggested Citation

  • Zhang, Jiayuan & Zhang, Xiaohui & Chen, Zhuo & Li, Li, 2010. "Thermodynamic and kinetic model of reforming coke-oven gas with steam," Energy, Elsevier, vol. 35(7), pages 3103-3108.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:7:p:3103-3108
    DOI: 10.1016/j.energy.2010.03.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210001799
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.03.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Yoon-Cheol & Lee, Bong-Ju & Chun, Young-Nam, 2009. "Characteristics of methane reforming using gliding arc reactor," Energy, Elsevier, vol. 34(2), pages 172-177.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi, Qun & Gong, Min-Hui & Huang, Yi & Feng, Jie & Hao, Yan-Hong & Zhang, Ji-Long & Li, Wen-Ying, 2016. "Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance," Energy, Elsevier, vol. 112(C), pages 618-628.
    2. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "Flow chart of methanol in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 541-550.
    3. Xiang, Dong & Zhou, Yunpeng, 2018. "Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process," Applied Energy, Elsevier, vol. 229(C), pages 1024-1034.
    4. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "The consumption, production and transportation of methanol in China: A review," Energy Policy, Elsevier, vol. 63(C), pages 130-138.
    5. Zhang, Baoxu & Chen, Yumin & Zhang, Bing & Peng, Ruifeng & Lu, Qiancheng & Yan, Weijie & Yu, Bo & Liu, Fang & Zhang, Junying, 2022. "Cyclic performance of coke oven gas - Steam reforming with assistance of steel slag derivates for high purity hydrogen production," Renewable Energy, Elsevier, vol. 184(C), pages 592-603.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Guoqiang & Wang, Feng & Li, Longjian & Zhang, Guofu, 2013. "Experiment of catalyst activity distribution effect on methanol steam reforming performance in the packed bed plate-type reactor," Energy, Elsevier, vol. 51(C), pages 267-272.
    2. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    3. Kim, Tae-Soo & Song, Soonho & Chun, Kwang-Min & Lee, Sang Hun, 2010. "An experimental study of syn-gas production via microwave plasma reforming of methane, iso-octane and gasoline," Energy, Elsevier, vol. 35(6), pages 2734-2743.
    4. Aleknaviciute, I. & Karayiannis, T.G. & Collins, M.W. & Xanthos, C., 2013. "Methane decomposition under a corona discharge to generate COx-free hydrogen," Energy, Elsevier, vol. 59(C), pages 432-439.
    5. Majidi Bidgoli, Abbas & Ghorbanzadeh, Atamalek & Lotfalipour, Raheleh & Roustaei, Ehsan & Zakavi, Marjan, 2017. "Gliding spark plasma: Physical principles and performance in direct pyrolysis of methane," Energy, Elsevier, vol. 125(C), pages 705-715.
    6. Ray, Debjyoti & Nepak, Devadutta & Vinodkumar, T. & Subrahmanyam, Ch., 2019. "g-C3N4 promoted DBD plasma assisted dry reforming of methane," Energy, Elsevier, vol. 183(C), pages 630-638.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:7:p:3103-3108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.