IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i7p2985-2991.html
   My bibliography  Save this article

Microwave pyrolysis, a novel process for recycling waste automotive engine oil

Author

Listed:
  • Lam, Su Shiung
  • Russell, Alan D.
  • Chase, Howard A.

Abstract

Used automotive engine oil was treated using a microwave-induced pyrolysis process, with the intention of assessing the suitability of the process in recovering valuable products from this otherwise difficult to dispose of waste. The resulting pyrolysis gases were condensed into liquid oil; the yield and composition of the recovered oil and remaining incondensable gases were determined, and these were compared with those arising from fresh oil. Process temperature was shown to have a significant effect on the overall yield and formation of the recovered oils. The recovered liquid and gaseous pyrolysis products contained various light hydrocarbons which could be used as a valuable fuel and as an industrial feedstock. Our results indicate that microwave pyrolysis shows extreme promise as a means for disposing of problematic waste oil. The recovery of commercially valuable products shows advantage over traditional, more destructive disposal methods, and suggests excellent potential for scaling the process to the commercial level.

Suggested Citation

  • Lam, Su Shiung & Russell, Alan D. & Chase, Howard A., 2010. "Microwave pyrolysis, a novel process for recycling waste automotive engine oil," Energy, Elsevier, vol. 35(7), pages 2985-2991.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:7:p:2985-2991
    DOI: 10.1016/j.energy.2010.03.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210001520
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.03.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wenlong & Zhao, Chao & Sun, Jing & Wang, Xiaolin & Zhao, Xiqiang & Mao, Yanpeng & Li, Xinning & Song, Zhanlong, 2015. "Quantitative measurement of energy utilization efficiency and study of influence factors in typical microwave heating process," Energy, Elsevier, vol. 87(C), pages 678-685.
    2. Kim, Seung-Soo & Kim, Jinsoo & Jeon, Jong-Ki & Park, Young-Kwon & Park, Chan-Jin, 2013. "Non-isothermal pyrolysis of the mixtures of waste automobile lubricating oil and polystyrene in a stirred batch reactor," Renewable Energy, Elsevier, vol. 54(C), pages 241-247.
    3. Mrad, Nadia & Varuvel, Edwin Geo & Tazerout, Mohand & Aloui, Fethi, 2012. "Effects of biofuel from fish oil industrial residue – Diesel blends in diesel engine," Energy, Elsevier, vol. 44(1), pages 955-963.
    4. Zhang, Kaihua & Wu, Yufeng & Wang, Wei & Li, Bin & Zhang, Yinan & Zuo, Tieyong, 2015. "Recycling indium from waste LCDs: A review," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 276-290.
    5. Jialin Gao & Bo Li & Yonggang Wei & Shiwei Zhou & Hua Wang, 2023. "Cracking of Waste Engine Oil in the Presence of Fe 3 O 4," Energies, MDPI, vol. 16(2), pages 1-14, January.
    6. Gao, Ying & Wang, Xianhua & Chen, Yingquan & Li, Pan & Liu, Huihui & Chen, Hanping, 2017. "Pyrolysis of rapeseed stalk: Influence of temperature on product characteristics and economic costs," Energy, Elsevier, vol. 122(C), pages 482-491.
    7. Bülent Özdalyan & Recep Ç. Orman, 2018. "Experimental Investigation of the Use of Waste Mineral Oils as a Fuel with Organic-Based Mn Additive," Energies, MDPI, vol. 11(6), pages 1-12, June.
    8. Mishra, Asmita & Siddiqi, Hammad & Kumari, Usha & Behera, Ipsita Dipamitra & Mukherjee, Subhrajit & Meikap, B.C., 2021. "Pyrolysis of waste lubricating oil/waste motor oil to generate high-grade fuel oil: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Paweł P. Włodarczyk & Barbara Włodarczyk, 2021. "Applicability of Waste Engine Oil for the Direct Production of Electricity," Energies, MDPI, vol. 14(4), pages 1-11, February.
    10. Yang, Y. & Brammer, J.G. & Samanya, J. & Hossain, A.K. & Hornung, A., 2013. "Investigation into the performance and emissions of a stationary diesel engine fuelled by sewage sludge intermediate pyrolysis oil and biodiesel blends," Energy, Elsevier, vol. 62(C), pages 269-276.
    11. Lam, Su Shiung & Liew, Rock Keey & Jusoh, Ahmad & Chong, Cheng Tung & Ani, Farid Nasir & Chase, Howard A., 2016. "Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 741-753.
    12. Xia, Ao & Cheng, Jun & Lin, Richen & Ding, Lingkan & Zhou, Junhu & Cen, Kefa, 2013. "Combination of hydrogen fermentation and methanogenesis to enhance energy conversion efficiency from trehalose," Energy, Elsevier, vol. 55(C), pages 631-637.
    13. Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
    14. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2016. "A review on the susceptor assisted microwave processing of materials," Energy, Elsevier, vol. 97(C), pages 306-338.
    15. Dhaundiyal, Alok & Toth, Laszlo & Bacskai, Istvan & Atsu, Divine, 2020. "Analysis of pyrolysis reactor for hardwood (Acacia) chips," Renewable Energy, Elsevier, vol. 147(P1), pages 1979-1989.
    16. Adeoye A.O & Quadri, R.O & Lawal, O. S., 2020. "Pyrolysis Of Biomass As A Suitable Alternative To Fossil Fuel Energy In Nigeria: An Overview," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 3(1), pages 27-30, December.
    17. Wan Adibah Wan Mahari & Nur Fatihah Zainuddin & Wan Mohd Norsani Wan Nik & Cheng Tung Chong & Su Shiung Lam, 2016. "Pyrolysis Recovery of Waste Shipping Oil Using Microwave Heating," Energies, MDPI, vol. 9(10), pages 1-9, September.
    18. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2013. "A theoretical study on the use of microwaves in reducing energy consumption for an endothermic reaction: Role of metal coated bounding surface," Energy, Elsevier, vol. 55(C), pages 278-294.
    19. Su Shiung Lam & Howard A. Chase, 2012. "A Review on Waste to Energy Processes Using Microwave Pyrolysis," Energies, MDPI, vol. 5(10), pages 1-24, October.
    20. Natacha Phetyim & Sommai Pivsa-Art, 2018. "Prototype Co-Pyrolysis of Used Lubricant Oil and Mixed Plastic Waste to Produce a Diesel-Like Fuel," Energies, MDPI, vol. 11(11), pages 1-11, November.
    21. Nasir Uddin, Md. & Daud, W.M.A. Wan & Abbas, Hazim F., 2013. "Potential hydrogen and non-condensable gases production from biomass pyrolysis: Insights into the process variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 204-224.
    22. Varuvel, Edwin Geo & Mrad, Nadia & Tazerout, Mohand & Aloui, Fethi, 2012. "Assessment of liquid fuel (bio-oil) production from waste fish fat and utilization in diesel engine," Applied Energy, Elsevier, vol. 100(C), pages 249-257.
    23. Jing Sun & Wenlong Wang & Zhen Liu & Qingluan Ma & Chao Zhao & Chunyuan Ma, 2012. "Kinetic Study of the Pyrolysis of Waste Printed Circuit Boards Subject to Conventional and Microwave Heating," Energies, MDPI, vol. 5(9), pages 1-12, August.
    24. Md Sumon Reza & Zhanar Baktybaevna Iskakova & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Marzhan M. Kubenova & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hrido, 2023. "Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-39, July.
    25. Suriapparao, Dadi V. & Hemanth Kumar, Tanneru & Reddy, B. Rajasekhar & Yerrayya, Attada & Srinivas, B. Abhinaya & Sivakumar, Pandian & Prakash, S. Reddy & Sankar Rao, Chinta & Sridevi, Veluru & Desing, 2022. "Role of ZSM5 catalyst and char susceptor on the synthesis of chemicals and hydrocarbons from microwave-assisted in-situ catalytic co-pyrolysis of algae and plastic wastes," Renewable Energy, Elsevier, vol. 181(C), pages 990-999.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:7:p:2985-2991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.