IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v107y2016icp502-522.html
   My bibliography  Save this article

Exergy, exergoenvironmental and exergoeconomic evaluation of a heat pump-integrated wall heating system

Author

Listed:
  • Akbulut, Ugur
  • Utlu, Zafer
  • Kincay, Olcay

Abstract

In this study, a vertical ground source heat pump wall heating system belonging to the Yıldız Renewable Energy House on the Davutpaşa Campus of Yıldız Technical University was experimentally and theoretically studied. The examination included energy, exergy, exergoenvironmental and exergoeconomic analyses from 1 January 2013 to 30 March 2013 (i.e., the “Winter Session”). Data were collected and uploaded to a MySQL database. “The moments when the heat pump is activated” was detected and “Monthly Average Values” were analysed. Theoretical analyses were conducted for the Winter Session and correlated with the experimental results. This study includes exergetically, exergoeconomically, and exergoenvironmental evaluate a building and its heating system from the generation stage to the envelope of the building. The findings are based on applying a low exergy, exergoenvironmental and exergoeconomic analysis to investigate the system performance. The energy and exergy efficiencies of the entire system were 67.36% and 27.40%, respectively, and the energy and exergy efficiencies of the wall heating system panels were 86.61% and 82.90%, respectively. The monthly average exergy-based environmental impact value was 0.212 mPts/s. The exergoeconomic factors changed from 74.97% to 75.77%.

Suggested Citation

  • Akbulut, Ugur & Utlu, Zafer & Kincay, Olcay, 2016. "Exergy, exergoenvironmental and exergoeconomic evaluation of a heat pump-integrated wall heating system," Energy, Elsevier, vol. 107(C), pages 502-522.
  • Handle: RePEc:eee:energy:v:107:y:2016:i:c:p:502-522
    DOI: 10.1016/j.energy.2016.04.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421630456X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.04.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    2. Greening, Benjamin & Azapagic, Adisa, 2012. "Domestic heat pumps: Life cycle environmental impacts and potential implications for the UK," Energy, Elsevier, vol. 39(1), pages 205-217.
    3. Çakır, Uğur & Çomaklı, Kemal & Çomaklı, Ömer & Karslı, Süleyman, 2013. "An experimental exergetic comparison of four different heat pump systems working at same conditions: As air to air, air to water, water to water and water to air," Energy, Elsevier, vol. 58(C), pages 210-219.
    4. Aydin, Devrim & Utlu, Zafer & Kincay, Olcay, 2015. "Thermal performance analysis of a solar energy sourced latent heat storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1213-1225.
    5. Utlu, Zafer & Hepbasli, Arif, 2009. "Exergoeconomic aspects of sectoral energy utilization for Turkish industrial sector and their impact on energy policies," Energy Policy, Elsevier, vol. 37(2), pages 577-587, February.
    6. Montagud, Carla & Corberán, José Miguel & Ruiz-Calvo, Félix, 2013. "Experimental and modeling analysis of a ground source heat pump system," Applied Energy, Elsevier, vol. 109(C), pages 328-336.
    7. Lohani, S.P. & Schmidt, D., 2010. "Comparison of energy and exergy analysis of fossil plant, ground and air source heat pump building heating system," Renewable Energy, Elsevier, vol. 35(6), pages 1275-1282.
    8. Meyer, Lutz & Tsatsaronis, George & Buchgeister, Jens & Schebek, Liselotte, 2009. "Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems," Energy, Elsevier, vol. 34(1), pages 75-89.
    9. Sánta, Róbert & Garbai, László & Fürstner, Igor, 2015. "Optimization of heat pump system," Energy, Elsevier, vol. 89(C), pages 45-54.
    10. Baldvinsson, Ivar & Nakata, Toshihiko, 2014. "A comparative exergy and exergoeconomic analysis of a residential heat supply system paradigm of Japan and local source based district heating system using SPECO (specific exergy cost) method," Energy, Elsevier, vol. 74(C), pages 537-554.
    11. Akbulut, Ugur & Kıncay, Olcay & Utlu, Zafer, 2016. "Analysis of a wall cooling system using a heat pump," Renewable Energy, Elsevier, vol. 85(C), pages 540-553.
    12. Kim, D.J., 2010. "A new thermoeconomic methodology for energy systems," Energy, Elsevier, vol. 35(1), pages 410-422.
    13. Bi, Yuehong & Wang, Xinhong & Liu, Yun & Zhang, Hua & Chen, Lingen, 2009. "Comprehensive exergy analysis of a ground-source heat pump system for both building heating and cooling modes," Applied Energy, Elsevier, vol. 86(12), pages 2560-2565, December.
    14. Tsatsaronis, George, 2007. "Definitions and nomenclature in exergy analysis and exergoeconomics," Energy, Elsevier, vol. 32(4), pages 249-253.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Jintong & Zhang, Qi & Wang, Xiaozhuang & Song, Dayong & Liu, Weiqi & Liu, Wenchao, 2018. "Exergy and exergoeconomic analyses with modeling for CO2 allocation of coal-fired CHP plants," Energy, Elsevier, vol. 152(C), pages 562-575.
    2. Luo, Lulin & Lu, Lidi & Shen, Xuelian & Chen, Jinhua & Pan, Yang & Wang, Yuchen & Luo, Qing, 2023. "Energy, exergy and economic analysis of an integrated ground source heat pump and anaerobic digestion system for Co-generation of heating, cooling and biogas," Energy, Elsevier, vol. 282(C).
    3. Manrique Delgado, Benjamin & Cao, Sunliang & Hasan, Ala & Sirén, Kai, 2017. "Thermoeconomic analysis of heat and electricity prosumers in residential zero-energy buildings in Finland," Energy, Elsevier, vol. 130(C), pages 544-559.
    4. Voloshchuk, Volodymyr & Gullo, Paride & Sereda, Volodymyr, 2020. "Advanced exergy-based performance enhancement of heat pump space heating system," Energy, Elsevier, vol. 205(C).
    5. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    6. Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Rastegari, Hajar & Ghaziaskar, Hassan S., 2019. "Multi-objective exergoeconomic and exergoenvironmental optimization of continuous synthesis of solketal through glycerol ketalization with acetone in the presence of ethanol as co-solvent," Renewable Energy, Elsevier, vol. 130(C), pages 735-748.
    7. Menberg, Kathrin & Heo, Yeonsook & Choi, Wonjun & Ooka, Ryozo & Choudhary, Ruchi & Shukuya, Masanori, 2017. "Exergy analysis of a hybrid ground-source heat pump system," Applied Energy, Elsevier, vol. 204(C), pages 31-46.
    8. Amiri Rad, Ehsan & Maddah, Saeed & Mohammadi, Saeed, 2020. "Designing and optimizing a novel cogeneration system for an office building based on thermo-economic and environmental analyses," Renewable Energy, Elsevier, vol. 151(C), pages 342-354.
    9. Stanek, Wojciech & Simla, Tomasz & Gazda, Wiesław, 2019. "Exergetic and thermo-ecological assessment of heat pump supported by electricity from renewable sources," Renewable Energy, Elsevier, vol. 131(C), pages 404-412.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    2. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    3. Bagdanavicius, Audrius & Jenkins, Nick & Hammond, Geoffrey P., 2012. "Assessment of community energy supply systems using energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 247-255.
    4. Querol, E. & Gonzalez-Regueral, B. & Ramos, A. & Perez-Benedito, J.L., 2011. "Novel application for exergy and thermoeconomic analysis of processes simulated with Aspen Plus®," Energy, Elsevier, vol. 36(2), pages 964-974.
    5. Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
    6. Haydargil, Derya & Abuşoğlu, Ayşegül, 2018. "A comparative thermoeconomic cost accounting analysis and evaluation of biogas engine-powered cogeneration," Energy, Elsevier, vol. 159(C), pages 97-114.
    7. Tsatsaronis, George & Morosuk, Tatiana & Koch, Daniela & Sorgenfrei, Max, 2013. "Understanding the thermodynamic inefficiencies in combustion processes," Energy, Elsevier, vol. 62(C), pages 3-11.
    8. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.
    9. Gürtürk, Mert & Oztop, Hakan F. & Hepbasli, Arif, 2015. "Comparison of exergoeconomic analysis of two different perlite expansion furnaces," Energy, Elsevier, vol. 80(C), pages 589-598.
    10. Adrian Bejan & George Tsatsaronis, 2021. "Purpose in Thermodynamics," Energies, MDPI, vol. 14(2), pages 1-25, January.
    11. Lara, Yolanda & Petrakopoulou, Fontina & Morosuk, Tatiana & Boyano, Alicia & Tsatsaronis, George, 2017. "An exergy-based study on the relationship between costs and environmental impacts in power plants," Energy, Elsevier, vol. 138(C), pages 920-928.
    12. Akbulut, Ugur & Kıncay, Olcay & Utlu, Zafer, 2016. "Analysis of a wall cooling system using a heat pump," Renewable Energy, Elsevier, vol. 85(C), pages 540-553.
    13. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    14. Silveira, Jose Luz & Lamas, Wendell de Queiroz & Tuna, Celso Eduardo & Villela, Iraides Aparecida de Castro & Miro, Laura Siso, 2012. "Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2894-2906.
    15. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    16. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    18. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "Exergetic and exergoeconomic aspects of wind energy systems in achieving sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2810-2825, August.
    19. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    20. Wang, Zefeng & Han, Wei & Zhang, Na & Liu, Meng & Jin, Hongguang, 2017. "Exergy cost allocation method based on energy level (ECAEL) for a CCHP system," Energy, Elsevier, vol. 134(C), pages 240-247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:107:y:2016:i:c:p:502-522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.