IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i1p67-74.html
   My bibliography  Save this article

An improved PSO for dynamic load dispatch of generators with valve-point effects

Author

Listed:
  • Yuan, Xiaohui
  • Su, Anjun
  • Yuan, Yanbin
  • Nie, Hao
  • Wang, Liang

Abstract

Dynamic load economic dispatch problem (DLED) is important in power systems operation, which is a complicated nonlinear constrained optimization problem. It has nonsmooth and nonconvex characteristics when generator valve-point effects are taken into account. This paper proposes an improved particle swarm optimization (IPSO) to solve DLED with valve-point effects. In the proposed IPSO method, feasibility-based rules and heuristic strategies with priority list based on probability are devised to handle constraints effectively. In contrast to the penalty function method, the constraint-handling method does not require penalty factors or any extra parameters and can guide the population to the feasible region quickly. Especially, equality constraints of DLED can be satisfied precisely. Furthermore, the effects of two crucial parameters on the performance of the IPSO for DLED are also studied. The feasibility and the effectiveness of the proposed method are demonstrated applying it to some examples and the test results are compared with those of other methods reported in the literature. It is shown that the proposed method is capable of yielding higher-quality solutions.

Suggested Citation

  • Yuan, Xiaohui & Su, Anjun & Yuan, Yanbin & Nie, Hao & Wang, Liang, 2009. "An improved PSO for dynamic load dispatch of generators with valve-point effects," Energy, Elsevier, vol. 34(1), pages 67-74.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:1:p:67-74
    DOI: 10.1016/j.energy.2008.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544208002491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2008.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takriti, Samer & Krasenbrink, Benedikt, 1999. "A decomposition approach for the fuel-constrained economic power-dispatch problem," European Journal of Operational Research, Elsevier, vol. 112(2), pages 460-466, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iman Ahmadianfar & Saeed Noshadian & Nadir Ahmed Elagib & Meysam Salarijazi, 2021. "Robust Diversity-based Sine-Cosine Algorithm for Optimizing Hydropower Multi-reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3513-3538, September.
    2. Ping Sun & Zhi-qiang Jiang & Ting-ting Wang & Yan-ke Zhang, 2016. "Research and Application of Parallel Normal Cloud Mutation Shuffled Frog Leaping Algorithm in Cascade Reservoirs Optimal Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1019-1035, February.
    3. Ahmadianfar, Iman & Samadi-Koucheksaraee, Arvin & Razavi, Saman, 2023. "Design of optimal operating rule curves for hydropower multi-reservoir systems by an influential optimization method," Renewable Energy, Elsevier, vol. 211(C), pages 508-521.
    4. Iman Ahmadianfar & Omid Bozorg-Haddad & Xuefeng Chu, 2019. "Optimizing Multiple Linear Rules for Multi-Reservoir Hydropower Systems Using an Optimization Method with an Adaptation Strategy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4265-4286, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:1:p:67-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.