IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v28y2003i7p607-625.html
   My bibliography  Save this article

Carbon exergy tax (CET): its impact on conventional energy system design and its contribution to advanced systems utilisation

Author

Listed:
  • Massardo, A.F.
  • Santarelli, M.
  • Borchiellini, R.

Abstract

A proposed analytical procedure for a charge on CO2 emissions is used to determine its impact on the design process of different conventional energy systems. The charge on CO2 emissions is defined as a Carbon Exergy Tax (CET). The CET utilises the concept of Efficiency Penalty of the energy system coupled with the Index of CO2Emissions, which connects the amount of the CO2 emitted by the plant with the Second Law efficiency of the plant itself. The aim is to reward the efficient use of energy resources, both from a resource and environmental standpoint, and to penalise plants inefficient in this respect. The CET and the conventional Carbon Tax (CT, based on energy policy considerations and imposed on the mass of emitted CO2) are applied to different conventional energy systems (a gas turbine simple cycle; a regenerative cogeneration gas turbine; a three pressure levels combined cycle) in order to determine their impact on the design of the plants. The effects of the CET and CT are investigated for different scenarios (pressure ratio, fuel cost, etc.). The results are presented using useful representations: the cost of electricity vs. efficiency, the cost of electricity vs. specific work, and the cost of electricity vs. plant design parameters (e.g., pressure ratio). Finally, ways that the use of the CET can contribute to the widespread utilization of advanced energy systems, which are more efficient and less polluting, is discussed. In particular, the CET and CT influence is presented and discussed for a solid oxide fuel cell (SOFC) and gas turbine combined cycle.

Suggested Citation

  • Massardo, A.F. & Santarelli, M. & Borchiellini, R., 2003. "Carbon exergy tax (CET): its impact on conventional energy system design and its contribution to advanced systems utilisation," Energy, Elsevier, vol. 28(7), pages 607-625.
  • Handle: RePEc:eee:energy:v:28:y:2003:i:7:p:607-625
    DOI: 10.1016/S0360-5442(02)00179-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544202001792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(02)00179-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lozano, M.A. & Valero, A., 1993. "Theory of the exergetic cost," Energy, Elsevier, vol. 18(9), pages 939-960.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2012. "Operational planning optimization of multiple interconnected steam power plants considering environmental costs," Energy, Elsevier, vol. 37(1), pages 549-561.
    2. Kondo, Kumiko, 2009. "Energy and exergy utilization efficiencies in the Japanese residential/commercial sectors," Energy Policy, Elsevier, vol. 37(9), pages 3475-3483, September.
    3. Duan, Hong-Bo & Zhu, Lei & Fan, Ying, 2014. "Optimal carbon taxes in carbon-constrained China: A logistic-induced energy economic hybrid model," Energy, Elsevier, vol. 69(C), pages 345-356.
    4. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "The role of an exergy-based building stock model for exploration of future decarbonisation scenarios and policy making," Energy Policy, Elsevier, vol. 105(C), pages 467-483.
    5. Lucia, Umberto, 2014. "Overview on fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 164-169.
    6. Lucia, Umberto & Grisolia, Giulia, 2017. "Unavailability percentage as energy planning and economic choice parameter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 197-204.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    2. Kwak, H.-Y. & Kim, D.-J. & Jeon, J.-S., 2003. "Exergetic and thermoeconomic analyses of power plants," Energy, Elsevier, vol. 28(4), pages 343-360.
    3. Silva, J.A.M. & Flórez-Orrego, D. & Oliveira, S., 2014. "An exergy based approach to determine production cost and CO2 allocation for petroleum derived fuels," Energy, Elsevier, vol. 67(C), pages 490-495.
    4. Marco F. Torchio, 2013. "Energy-Exergy, Environmental and Economic Criteria in Combined Heat and Power (CHP) Plants: Indexes for the Evaluation of the Cogeneration Potential," Energies, MDPI, vol. 6(5), pages 1-23, May.
    5. Tonon, S. & Brown, M.T. & Luchi, F. & Mirandola, A. & Stoppato, A. & Ulgiati, S., 2006. "An integrated assessment of energy conversion processes by means of thermodynamic, economic and environmental parameters," Energy, Elsevier, vol. 31(1), pages 149-163.
    6. Lozano, Miguel A. & Serra, Luis M. & Pina, Eduardo A., 2022. "Optimal design of trigeneration systems for buildings considering cooperative game theory for allocating production cost to energy services," Energy, Elsevier, vol. 261(PB).
    7. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2018. "Thermoeconomic cost allocation in simple trigeneration systems including thermal energy storage," Energy, Elsevier, vol. 153(C), pages 170-184.
    8. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    9. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    10. Rocco, M.V. & Colombo, E. & Sciubba, E., 2014. "Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method," Applied Energy, Elsevier, vol. 113(C), pages 1405-1420.
    11. Lozano, Miguel A. & Ramos, Jose C. & Serra, Luis M., 2010. "Cost optimization of the design of CHCP (combined heat, cooling and power) systems under legal constraints," Energy, Elsevier, vol. 35(2), pages 794-805.
    12. Piacentino, Antonio & Cardona, Fabio, 2010. "Scope-Oriented Thermoeconomic analysis of energy systems. Part I: Looking for a non-postulated cost accounting for the dissipative devices of a vapour compression chiller. Is it feasible?," Applied Energy, Elsevier, vol. 87(3), pages 943-956, March.
    13. Torres, César & Valero, Antonio & Valero, Alicia, 2013. "Exergoecology as a tool for ecological modelling. The case of the US food production chain," Ecological Modelling, Elsevier, vol. 255(C), pages 21-28.
    14. Wang, Zefeng & Han, Wei & Zhang, Na & Liu, Meng & Jin, Hongguang, 2017. "Exergy cost allocation method based on energy level (ECAEL) for a CCHP system," Energy, Elsevier, vol. 134(C), pages 240-247.
    15. Uran, V., 2006. "Optimization system for combined heat and electricity production in the wood-processing industry," Energy, Elsevier, vol. 31(14), pages 2996-3016.
    16. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    17. Bahlouli, K. & Khoshbakhti Saray, R. & Sarabchi, N., 2015. "Parametric investigation and thermo-economic multi-objective optimization of an ammonia–water power/cooling cycle coupled with an HCCI (homogeneous charge compression ignition) engine," Energy, Elsevier, vol. 86(C), pages 672-684.
    18. Jann Michael Weinand, 2020. "Reviewing Municipal Energy System Planning in a Bibliometric Analysis: Evolution of the Research Field between 1991 and 2019," Energies, MDPI, vol. 13(6), pages 1-18, March.
    19. Coskun, C. & Oktay, Z. & Dincer, I., 2011. "Modified exergoeconomic modeling of geothermal power plants," Energy, Elsevier, vol. 36(11), pages 6358-6366.
    20. Gutiérrez, Alexis Sagastume & Vandecasteele, Carlo, 2011. "Exergy-based indicators to evaluate the possibilities to reduce fuel consumption in lime production," Energy, Elsevier, vol. 36(5), pages 2820-2827.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:28:y:2003:i:7:p:607-625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.