IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i11p1770-1778.html
   My bibliography  Save this article

Detailed measurement of heat/mass transfer with continuous and multiple V-shaped ribs in rectangular channel

Author

Listed:
  • Lee, Dong Hyun
  • Rhee, Dong-Ho
  • Kim, Kyung Min
  • Cho, Hyung Hee
  • Moon, Hee Koo

Abstract

Effects of aspect ratio on heat/mass transfer were investigated in rectangular channels with two different V-shaped rib configurations, which are continuous V-shaped rib configuration with a 60° attack angle, and multiple (staggered) V-shaped rib configuration with a 45° attack angle. The square ribs were attached on the test section in a parallel manner. A naphthalene sublimation method was used to measure the local heat/mass transfer coefficients. For the continuous V-shaped rib configuration, two pairs of counter-rotating vortices were generated in the channel, and high transfer region was formed at the center of the ribbed walls. However, for the multiple V-shaped rib configuration with 45° attack angle, asymmetric secondary flow patterns were generated due to its geometric features, resulting in uniform heat/mass transfer distributions. The effect of channel aspect ratio was more significant for the continuous 60° V-shaped rib than for the multiple 45° V-shaped rib configuration.

Suggested Citation

  • Lee, Dong Hyun & Rhee, Dong-Ho & Kim, Kyung Min & Cho, Hyung Hee & Moon, Hee Koo, 2009. "Detailed measurement of heat/mass transfer with continuous and multiple V-shaped ribs in rectangular channel," Energy, Elsevier, vol. 34(11), pages 1770-1778.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:11:p:1770-1778
    DOI: 10.1016/j.energy.2009.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209002898
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, B.H. & Huang, W.H., 1988. "Second-law analysis for heat-transfer enhancement on a rib-type turbulence promoter," Energy, Elsevier, vol. 13(2), pages 167-175.
    2. Maeda, Naoya & Hirota, Masafumi & Fujita, Hideomi, 2005. "Turbulent flow in a rectangular duct with a smooth-to-rough step change in surface roughness," Energy, Elsevier, vol. 30(2), pages 129-148.
    3. Mittal, M.K. & Varun, & Saini, R.P. & Singal, S.K., 2007. "Effective efficiency of solar air heaters having different types of roughness elements on the absorber plate," Energy, Elsevier, vol. 32(5), pages 739-745.
    4. Habib, M.A. & Mobarak, A.M. & Attya, A.M. & Aly, A.Z., 1992. "An experimental investigation of heat-transfer and flow in channels with streamwise-periodic flow," Energy, Elsevier, vol. 17(11), pages 1049-1058.
    5. Karwa, Rajendra & Solanki, S.C & Saini, J.S, 2001. "Thermo-hydraulic performance of solar air heaters having integral chamfered rib roughness on absorber plates," Energy, Elsevier, vol. 26(2), pages 161-176.
    6. Saini, R.P. & Verma, Jitendra, 2008. "Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters," Energy, Elsevier, vol. 33(8), pages 1277-1287.
    7. Ravigururajan, T.S. & Bergles, A.E., 1996. "Optimization of in-tube enhancement for large evaporators and condensers," Energy, Elsevier, vol. 21(5), pages 421-432.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Dongxu & Quan, Shenglin & Zuo, Jianguo & Xu, Shiming, 2019. "Numerical investigation of heat transfer enhancement in a solar air heater roughened by multiple V-shaped ribs," Renewable Energy, Elsevier, vol. 134(C), pages 78-88.
    2. Bhushan, Brij & Singh, Ranjit, 2010. "A review on methodology of artificial roughness used in duct of solar air heaters," Energy, Elsevier, vol. 35(1), pages 202-212.
    3. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    4. Shilong, Zhao & Yuxin, Fan, 2020. "Experimental and numerical study on the flame characteristics and cooling effectiveness of air-cooled flame holder," Energy, Elsevier, vol. 209(C).
    5. Kuan-Tzu Huang & Yao-Hsien Liu, 2019. "Enhancement of Mist Flow Cooling by Using V-Shaped Broken Ribs," Energies, MDPI, vol. 12(19), pages 1-18, October.
    6. Jin, Dongxu & Zhang, Manman & Wang, Ping & Xu, Shasha, 2015. "Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 89(C), pages 178-190.
    7. Park, Jun Su & Park, Sehjin & Kim, Kyung Min & Choi, Beom Seok & Cho, Hyung Hee, 2013. "Effect of the thermal insulation on generator and micro gas turbine system," Energy, Elsevier, vol. 59(C), pages 581-589.
    8. Wei-Jie Su & Yao-Hsien Liu, 2021. "Thermal Performance of V-Shaped and X-Shaped Ribs in Trapezoidal Cooling Channels," Energies, MDPI, vol. 14(16), pages 1-15, August.
    9. Arnut Phila & Chinaruk Thianpong & Smith Eiamsa-ard, 2019. "Influence of Geometric Parameters of Alternate Axis Twisted Baffles on the Local Heat Transfer Distribution and Pressure Drop in a Rectangular Channel Using a Transient Liquid Crystal Technique," Energies, MDPI, vol. 12(12), pages 1-25, June.
    10. Kim, Kyung Min & Jeon, Yun Heung & Yun, Namgeon & Lee, Dong Hyun & Cho, Hyung Hee, 2011. "Thermo-mechanical life prediction for material lifetime improvement of an internal cooling system in a combustion liner," Energy, Elsevier, vol. 36(2), pages 942-949.
    11. Alam, Tabish & Saini, R.P. & Saini, J.S., 2014. "Use of turbulators for heat transfer augmentation in an air duct – A review," Renewable Energy, Elsevier, vol. 62(C), pages 689-715.
    12. Chamoli, Sunil & Thakur, N.S. & Saini, J.S., 2012. "A review of turbulence promoters used in solar thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3154-3175.
    13. Jin, Dongxu & Zuo, Jianguo & Quan, Shenglin & Xu, Shiming & Gao, Hao, 2017. "Thermohydraulic performance of solar air heater with staggered multiple V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 127(C), pages 68-77.
    14. Song, Jiwoon & Lee, Keon Woo & Kim, Kyung Min & Cho, Hyung Hee, 2012. "Slot film cooling performance in combustor with flame holders," Energy, Elsevier, vol. 37(1), pages 533-539.
    15. Hwang, Sang Dong & Kwon, Hyun Goo & Cho, Hyung Hee, 2010. "Local heat transfer and thermal performance on periodically dimple-protrusion patterned walls for compact heat exchangers," Energy, Elsevier, vol. 35(12), pages 5357-5364.
    16. Kim, Kyung Min & Kim, Beom Seok & Lee, Dong Hyun & Moon, Hokyu & Cho, Hyung Hee, 2010. "Optimal design of transverse ribs in tubes for thermal performance enhancement," Energy, Elsevier, vol. 35(6), pages 2400-2406.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Kyung Min & Kim, Beom Seok & Lee, Dong Hyun & Moon, Hokyu & Cho, Hyung Hee, 2010. "Optimal design of transverse ribs in tubes for thermal performance enhancement," Energy, Elsevier, vol. 35(6), pages 2400-2406.
    2. Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
    3. Bhushan, Brij & Singh, Ranjit, 2010. "A review on methodology of artificial roughness used in duct of solar air heaters," Energy, Elsevier, vol. 35(1), pages 202-212.
    4. Salman, Mohammad & Chauhan, Ranchan & Poongavanam, Ganesh Kumar & Kim, Sung Chul, 2022. "Analytical investigation of jet impingement solar air heater with dimple-roughened absorber surface via thermal and effective analysis," Renewable Energy, Elsevier, vol. 199(C), pages 1248-1257.
    5. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    6. El-Sebaii, A.A. & Al-Snani, H., 2010. "Effect of selective coating on thermal performance of flat plate solar air heaters," Energy, Elsevier, vol. 35(4), pages 1820-1828.
    7. Mohammadi, K. & Sabzpooshani, M., 2013. "Comprehensive performance evaluation and parametric studies of single pass solar air heater with fins and baffles attached over the absorber plate," Energy, Elsevier, vol. 57(C), pages 741-750.
    8. Varun Kumar, B. & Manikandan, G. & Rajesh Kanna, P., 2021. "Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD," Energy, Elsevier, vol. 234(C).
    9. Anil Singh Yadav & Tabish Alam & Gaurav Gupta & Rajiv Saxena & Naveen Kumar Gupta & K. Viswanath Allamraju & Rahul Kumar & Neeraj Sharma & Abhishek Sharma & Utkarsh Pandey & Yogesh Agrawal, 2022. "A Numerical Investigation of an Artificially Roughened Solar Air Heater," Energies, MDPI, vol. 15(21), pages 1-27, October.
    10. Luna, D. & Nadeau, J.-P. & Jannot, Y., 2009. "Solar timber kilns: State of the art and foreseeable developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1446-1455, August.
    11. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    12. Kumar, Rajesh & Chand, Prabha, 2017. "Performance enhancement of solar air heater using herringbone corrugated fins," Energy, Elsevier, vol. 127(C), pages 271-279.
    13. Sharma, Sanjay K. & Kalamkar, Vilas R., 2015. "Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 413-435.
    14. Karwa, Rajendra & Chauhan, Kalpana, 2010. "Performance evaluation of solar air heaters having v-down discrete rib roughness on the absorber plate," Energy, Elsevier, vol. 35(1), pages 398-409.
    15. Patil, Anil Kumar, 2015. "Heat transfer mechanism and energy efficiency of artificially roughened solar air heaters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 681-689.
    16. Chamoli, Sunil & Thakur, N.S. & Saini, J.S., 2012. "A review of turbulence promoters used in solar thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3154-3175.
    17. Yadav, Anil Singh & Bhagoria, J.L., 2013. "Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 60-79.
    18. Alam, Tabish & Kim, Man-Hoe, 2017. "A critical review on artificial roughness provided in rectangular solar air heater duct," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 387-400.
    19. Gupta, M.K. & Kaushik, S.C., 2009. "Performance evaluation of solar air heater for various artificial roughness geometries based on energy, effective and exergy efficiencies," Renewable Energy, Elsevier, vol. 34(3), pages 465-476.
    20. Tanda, Giovanni, 2011. "Performance of solar air heater ducts with different types of ribs on the absorber plate," Energy, Elsevier, vol. 36(11), pages 6651-6660.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:11:p:1770-1778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.