IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i10p1573-1578.html
   My bibliography  Save this article

Economics of Wind turbine as an energy fuel saver – A case study for remote application in oman

Author

Listed:
  • Malik, A.
  • Al-Badi, A.H.

Abstract

This paper presents a study carried out to investigate the economics of wind turbine as an energy fuel saver. The load and the wind data is taken from a remote agricultural research station in Oman. Presently, the station is provided with electricity from diesel-engine generating units. The annual peak load and minimum load recorded at the site is 130kW and 28kW respectively. The annual average wind speed at the site is 5.7m/s. A 50-kW wind turbine is selected to demonstrate the economic feasibility of the turbine as a fuel saver. The results show that wind energy utilization is an attractive option with total specific cost of the selected wind turbine ranges between 7.4 and 8.45¢/kWh at 7.55% discount rate comparing to diesel generation operating cost of 14.3¢/kWh, considering the capital cost of diesel units as sunk. The simple payback period of the turbine is between 5.1 and 5.4 years and discounted payback between 6.7 and 8.0 years.

Suggested Citation

  • Malik, A. & Al-Badi, A.H., 2009. "Economics of Wind turbine as an energy fuel saver – A case study for remote application in oman," Energy, Elsevier, vol. 34(10), pages 1573-1578.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:10:p:1573-1578
    DOI: 10.1016/j.energy.2009.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209002795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sulaiman, M.Yusof & Akaak, Ahmed Mohammed & Wahab, Mahdi Abd & Zakaria, Azmi & Sulaiman, Z.Abidin & Suradi, Jamil, 2002. "Wind characteristics of Oman," Energy, Elsevier, vol. 27(1), pages 35-46.
    2. Al Malki, Ahmed & Al Amri, Mohamme & Al Jabri, Hamoud, 1998. "Experimental study of using renewable energy in the rural areas of Oman," Renewable Energy, Elsevier, vol. 14(1), pages 319-324.
    3. Dorvlo, Atsu S.S. & Ampratwum, David B., 1998. "Summary climatic data for solar technology development in Oman," Renewable Energy, Elsevier, vol. 14(1), pages 255-262.
    4. Al Suleimani, Zaher & Rao, N. R., 2000. "Wind-powered electric water-pumping system installed in a remote location," Applied Energy, Elsevier, vol. 65(1-4), pages 339-347, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yasser Maklad, 2014. "Quantification and Costing of Domestic Electricity Generation for Armidale, New South Wales, Australia Utilising Micro Wind Turbines," International Journal of Energy Economics and Policy, Econjournals, vol. 4(2), pages 208-219.
    2. Rosales-Asensio, Enrique & Borge-Diez, David & Pérez-Hoyos, Ana & Colmenar-Santos, Antonio, 2019. "Reduction of water cost for an existing wind-energy-based desalination scheme: A preliminary configuration," Energy, Elsevier, vol. 167(C), pages 548-560.
    3. Ouammi, Ahmed & Sacile, Roberto & Zejli, Driss & Mimet, Abdelaziz & Benchrifa, Rachid, 2010. "Sustainability of a wind power plant: Application to different Moroccan sites," Energy, Elsevier, vol. 35(10), pages 4226-4236.
    4. Rabbani, Rabab & Zeeshan, Muhammad, 2022. "Impact of policy changes on financial viability of wind power plants in Pakistan," Renewable Energy, Elsevier, vol. 193(C), pages 789-806.
    5. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    6. AL-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel & Al-Alawi, Saleh, 2010. "Assessment of wind energy potential locations in Oman using data from existing weather stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1428-1436, June.
    7. Mohammadi, Kasra & Shamshirband, Shahaboddin & Yee, Por Lip & Petković, Dalibor & Zamani, Mazdak & Ch, Sudheer, 2015. "Predicting the wind power density based upon extreme learning machine," Energy, Elsevier, vol. 86(C), pages 232-239.
    8. Mohammadi, Kasra & Mostafaeipour, Ali & Sabzpooshani, Majid, 2014. "Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran," Energy, Elsevier, vol. 67(C), pages 117-128.
    9. Shamshirband, Shahaboddin & Keivani, Afram & Mohammadi, Kasra & Lee, Malrey & Hamid, Siti Hafizah Abd & Petkovic, Dalibor, 2016. "Assessing the proficiency of adaptive neuro-fuzzy system to estimate wind power density: Case study of Aligoodarz, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 429-435.
    10. Li, Zhe & Boyle, Fergal & Reynolds, Anthony, 2012. "Domestic application of micro wind turbines in Ireland: Investigation of their economic viability," Renewable Energy, Elsevier, vol. 41(C), pages 64-74.
    11. Al-Badi, A.H. & Malik, A. & Gastli, A., 2011. "Sustainable energy usage in Oman—Opportunities and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3780-3788.
    12. Hosseinalizadeh, Ramin & Shakouri G, Hamed & Amalnick, Mohsen Sadegh & Taghipour, Peyman, 2016. "Economic sizing of a hybrid (PV–WT–FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: Case study of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 139-150.
    13. Kwami Senam A. Sedzro & Adekunlé Akim Salami & Pierre Akuété Agbessi & Mawugno Koffi Kodjo, 2022. "Comparative Study of Wind Energy Potential Estimation Methods for Wind Sites in Togo and Benin (West Sub-Saharan Africa)," Energies, MDPI, vol. 15(22), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doukas, Haris & Patlitzianas, Konstantinos D. & Kagiannas, Argyris G. & Psarras, John, 2006. "Renewable energy sources and rationale use of energy development in the countries of GCC: Myth or reality?," Renewable Energy, Elsevier, vol. 31(6), pages 755-770.
    2. AL-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel & Al-Alawi, Saleh, 2010. "Assessment of wind energy potential locations in Oman using data from existing weather stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1428-1436, June.
    3. Patlitzianas, Konstantinos D. & Doukas, Haris & Psarras, John, 2006. "Enhancing renewable energy in the Arab States of the Gulf: Constraints & efforts," Energy Policy, Elsevier, vol. 34(18), pages 3719-3726, December.
    4. Siebert, Stefan & Nagieb, Maher & Buerkert, Andreas, 2007. "Climate and irrigation water use of a mountain oasis in northern Oman," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 1-14, April.
    5. Sulaiman, M.Yusof & Akaak, Ahmed Mohammed & Wahab, Mahdi Abd & Zakaria, Azmi & Sulaiman, Z.Abidin & Suradi, Jamil, 2002. "Wind characteristics of Oman," Energy, Elsevier, vol. 27(1), pages 35-46.
    6. Liu, Feng Jiao & Chang, Tian Pau, 2011. "Validity analysis of maximum entropy distribution based on different moment constraints for wind energy assessment," Energy, Elsevier, vol. 36(3), pages 1820-1826.
    7. Al-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel, 2010. "Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3192-3198, December.
    8. Al-Badi, A.H. & Malik, A. & Gastli, A., 2011. "Sustainable energy usage in Oman—Opportunities and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3780-3788.
    9. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    10. Atalay, Yasemin & Biermann, Frank & Kalfagianni, Agni, 2016. "Adoption of renewable energy technologies in oil-rich countries: Explaining policy variation in the Gulf Cooperation Council states," Renewable Energy, Elsevier, vol. 85(C), pages 206-214.
    11. Celik, A.N., 2006. "A simplified model for estimating yearly wind fraction in hybrid-wind energy systems," Renewable Energy, Elsevier, vol. 31(1), pages 105-118.
    12. Maleki, Akbar & Khajeh, Morteza Gholipour & Rosen, Marc A., 2016. "Weather forecasting for optimization of a hybrid solar-wind–powered reverse osmosis water desalination system using a novel optimizer approach," Energy, Elsevier, vol. 114(C), pages 1120-1134.
    13. Muhammad Shoaib & Imran Siddiqui & Shafiqur Rehman & Saif Ur Rehman & Shamim Khan & Aref Lashin, 2016. "Comparison of Wind Energy Generation Using the Maximum Entropy Principle and the Weibull Distribution Function," Energies, MDPI, vol. 9(10), pages 1-18, October.
    14. Musallam Tabook & Sameen Ahmed Khan, 2021. "The Future of the Renewable Energy in Oman: Case Study of Salalah City," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 517-522.
    15. Patlitzianas, Konstantinos D. & Doukas, Haris & Askounis, Dimitris Th., 2007. "An assessment of the sustainable energy investments in the framework of the EU–GCC cooperation," Renewable Energy, Elsevier, vol. 32(10), pages 1689-1704.
    16. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.
    17. Chang, Tian Pau, 2011. "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application," Applied Energy, Elsevier, vol. 88(1), pages 272-282, January.
    18. Kwan, Calvin Lee, 2012. "Influence of local environmental, social, economic and political variables on the spatial distribution of residential solar PV arrays across the United States," Energy Policy, Elsevier, vol. 47(C), pages 332-344.
    19. Ghaithan, Ahmed M. & Al-Hanbali, Ahmad & Mohammed, Awsan & Attia, Ahmed M. & Saleh, Haitham & Alsawafy, Omar, 2021. "Optimization of a solar-wind- grid powered desalination system in Saudi Arabia," Renewable Energy, Elsevier, vol. 178(C), pages 295-306.
    20. Touré, Siaka, 2005. "Investigations on the Eigen‐coordinates method for the 2‐parameter weibull distribution of wind speed," Renewable Energy, Elsevier, vol. 30(4), pages 511-521.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:10:p:1573-1578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.