IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v167y2019icp548-560.html
   My bibliography  Save this article

Reduction of water cost for an existing wind-energy-based desalination scheme: A preliminary configuration

Author

Listed:
  • Rosales-Asensio, Enrique
  • Borge-Diez, David
  • Pérez-Hoyos, Ana
  • Colmenar-Santos, Antonio

Abstract

One possible contender to replace conventional reverse osmosis schemes is an energy solution where inexhaustible resources work together with a reverse osmosis plant. Based on the experience of an existing wind-powered desalination scheme run for more than 15 years by Soslaires Canarias S.L., the final objective of this paper is to propose improvements to the scheme so as to achieve a reduction in the cost of water (through restrained capital expenses) for the sake of greater feasibility and efficiency. The cost of the scheme is evaluated assuming a combined use of a reverse osmosis desalination plant and wind energy, using, for this purpose, the (exclusive) information provided by the industrial partner. Results showed that by carrying out the actions suggested in this paper, this scheme would be able to reduce its cost of water (COW) by about 0.022 EUR per cubic meter for the current LCOE of wind turbine technology in the study area (about 6 c€/kWh for the southeast of the island of Gran Canaria, Spain). This would mean that with an additional total capital investment cost of 196 000 € (from the current scheme of Soslaires Canarias S.L.), and supposing an average membrane life expectancy of 10 years for the current state-of-the-art membranes, a net present value of 74 360.95 €, a profitability index of 1.3794, and a 224.4881% internal rate of return would be achieved.

Suggested Citation

  • Rosales-Asensio, Enrique & Borge-Diez, David & Pérez-Hoyos, Ana & Colmenar-Santos, Antonio, 2019. "Reduction of water cost for an existing wind-energy-based desalination scheme: A preliminary configuration," Energy, Elsevier, vol. 167(C), pages 548-560.
  • Handle: RePEc:eee:energy:v:167:y:2019:i:c:p:548-560
    DOI: 10.1016/j.energy.2018.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218322084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhenyu & Siddiqi, Afreen & Anadon, Laura Diaz & Narayanamurti, Venkatesh, 2018. "Towards sustainability in water-energy nexus: Ocean energy for seawater desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3833-3847.
    2. Peñate, Baltasar & Castellano, Fernando & Bello, Alejandro & García-Rodríguez, Lourdes, 2011. "Assessment of a stand-alone gradual capacity reverse osmosis desalination plant to adapt to wind power availability: A case study," Energy, Elsevier, vol. 36(7), pages 4372-4384.
    3. Sunderland, Keith M. & Narayana, Mahinsasa & Putrus, Ghanim & Conlon, Michael F. & McDonald, Steve, 2016. "The cost of energy associated with micro wind generation: International case studies of rural and urban installations," Energy, Elsevier, vol. 109(C), pages 818-829.
    4. Gorjian, Shiva & Ghobadian, Barat, 2015. "Solar desalination: A sustainable solution to water crisis in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 571-584.
    5. Mahmoud Shatat & Saffa B. Riffat, 2014. "Water desalination technologies utilizing conventional and renewable energy sources," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(1), pages 1-19.
    6. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Investigation into the optimal wind turbine layout patterns for a Hong Kong offshore wind farm," Energy, Elsevier, vol. 73(C), pages 430-442.
    7. Malik, A. & Al-Badi, A.H., 2009. "Economics of Wind turbine as an energy fuel saver – A case study for remote application in oman," Energy, Elsevier, vol. 34(10), pages 1573-1578.
    8. Johansson, V. & Thorson, L. & Goop, J. & Göransson, L. & Odenberger, M. & Reichenberg, L. & Taljegard, M. & Johnsson, F., 2017. "Value of wind power – Implications from specific power," Energy, Elsevier, vol. 126(C), pages 352-360.
    9. Eshoul, Nuri M. & Agnew, Brian & Anderson, Alexander & Atab, Mohanad S., 2017. "Exergetic and economic analysis of two-pass RO desalination proposed plant for domestic water and irrigation," Energy, Elsevier, vol. 122(C), pages 319-328.
    10. Ederer, Nikolaus, 2014. "The right size matters: Investigating the offshore wind turbine market equilibrium," Energy, Elsevier, vol. 68(C), pages 910-921.
    11. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    12. Rensonnet, Thibaut & Uche, Javier & Serra, Luis, 2007. "Simulation and thermoeconomic analysis of different configurations of gas turbine (GT)-based dual-purpose power and desalination plants (DPPDP) and hybrid plants (HP)," Energy, Elsevier, vol. 32(6), pages 1012-1023.
    13. Alghoul, M.A. & Poovanaesvaran, P. & Mohammed, M.H. & Fadhil, A.M. & Muftah, A.F. & Alkilani, M.M. & Sopian, K., 2016. "Design and experimental performance of brackish water reverse osmosis desalination unit powered by 2 kW photovoltaic system," Renewable Energy, Elsevier, vol. 93(C), pages 101-114.
    14. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Savsani, Vimal, 2017. "Estimation of technical and economic potential of offshore wind along the coast of India," Energy, Elsevier, vol. 138(C), pages 79-91.
    15. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    16. Agashichev, Sergei P. & El-Nashar, Ali M., 2005. "Systemic approach for techno-economic evaluation of triple hybrid (RO, MSF and power generation) scheme including accounting of CO2 emission," Energy, Elsevier, vol. 30(8), pages 1283-1303.
    17. Fernandez-Gonzalez, C. & Dominguez-Ramos, A. & Ibañez, R. & Irabien, A., 2015. "Sustainability assessment of electrodialysis powered by photovoltaic solar energy for freshwater production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 604-615.
    18. Madhlopa, A. & Clarke, J.A., 2013. "Computation of irradiance in a solar still by using a refined algorithm," Renewable Energy, Elsevier, vol. 51(C), pages 13-21.
    19. Eltawil, Mohamed A. & Zhengming, Zhao & Yuan, Liqiang, 2009. "A review of renewable energy technologies integrated with desalination systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2245-2262, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dallavalle, Elisa & Cipolletta, Mariasole & Casson Moreno, Valeria & Cozzani, Valerio & Zanuttigh, Barbara, 2021. "Towards green transition of touristic islands through hybrid renewable energy systems. A case study in Tenerife, Canary Islands," Renewable Energy, Elsevier, vol. 174(C), pages 426-443.
    2. Okampo, Ewaoche John & Nwulu, Nnamdi, 2021. "Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esmaeil Ahmadi & Benjamin McLellan & Seiichi Ogata & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "An Integrated Planning Framework for Sustainable Water and Energy Supply," Sustainability, MDPI, vol. 12(10), pages 1-37, May.
    2. Ahmadi, Esmaeil & McLellan, Benjamin & Tezuka, Tetsuo, 2020. "The economic synergies of modelling the renewable energy-water nexus towards sustainability," Renewable Energy, Elsevier, vol. 162(C), pages 1347-1366.
    3. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    4. Mito, Mohamed T. & Ma, Xianghong & Albuflasa, Hanan & Davies, Philip A., 2019. "Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 669-685.
    5. Kasaeian, Alibakhsh & Rajaee, Fatemeh & Yan, Wei-Mon, 2019. "Osmotic desalination by solar energy: A critical review," Renewable Energy, Elsevier, vol. 134(C), pages 1473-1490.
    6. Mahmoudi, Ali & Bostani, Mohammad & Rashidi, Saman & Valipour, Mohammad Sadegh, 2023. "Challenges and opportunities of desalination with renewable energy resources in Middle East countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    7. Prado de Nicolás, Amanda & Molina-García, Ángel & García-Bermejo, Juan Tomás & Vera-García, Francisco, 2023. "Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    8. Uche, J. & Muzás, A. & Acevedo, L.E. & Usón, S. & Martínez, A. & Bayod, A.A., 2020. "Experimental tests to validate the simulation model of a Domestic Trigeneration Scheme with hybrid RESs and Desalting Techniques," Renewable Energy, Elsevier, vol. 155(C), pages 407-419.
    9. Gude, Veera Gnaneswar, 2016. "Geothermal source potential for water desalination – Current status and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1038-1065.
    10. Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.
    11. Li, Sheying & Cai, Yang-Hui & Schäfer, Andrea I. & Richards, Bryce S., 2019. "Renewable energy powered membrane technology: A review of the reliability of photovoltaic-powered membrane system components for brackish water desalination," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Omar, Amr & Nashed, Amir & Li, Qiyuan & Leslie, Greg & Taylor, Robert A., 2020. "Pathways for integrated concentrated solar power - Desalination: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Schallenberg-Rodríguez, Julieta & Del Rio-Gamero, Beatriz & Melian-Martel, Noemi & Lis Alecio, Tyrone & González Herrera, Javier, 2020. "Energy supply of a large size desalination plant using wave energy. Practical case: North of Gran Canaria," Applied Energy, Elsevier, vol. 278(C).
    14. Carta, José A. & Cabrera, Pedro, 2021. "Optimal sizing of stand-alone wind-powered seawater reverse osmosis plants without use of massive energy storage," Applied Energy, Elsevier, vol. 304(C).
    15. Usman, Haamid Sani & Touati, Khaled & Rahaman, Md. Saifur, 2021. "An economic evaluation of renewable energy-powered membrane distillation for desalination of brackish water," Renewable Energy, Elsevier, vol. 169(C), pages 1294-1304.
    16. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Anand, B. & Shankar, R. & Murugavelh, S. & Rivera, W. & Midhun Prasad, K. & Nagarajan, R., 2021. "A review on solar photovoltaic thermal integrated desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    18. Abdullah Kaya & M. Evren Tok & Muammer Koc, 2019. "A Levelized Cost Analysis for Solar-Energy-Powered Sea Water Desalination in The Emirate of Abu Dhabi," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    19. Pinto, F. Silva & Marques, R. Cunha, 2017. "Desalination projects economic feasibility: A standardization of cost determinants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 904-915.
    20. Gonzalez, Alonso & Grágeda, Mario & Ushak, Svetlana, 2017. "Assessment of pilot-scale water purification module with electrodialysis technology and solar energy," Applied Energy, Elsevier, vol. 206(C), pages 1643-1652.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:167:y:2019:i:c:p:548-560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.