IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v33y2008i9p1407-1416.html
   My bibliography  Save this article

Thermochemical two-step water-splitting for hydrogen production using Fe-YSZ particles and a ceramic foam device

Author

Listed:
  • Gokon, Nobuyuki
  • Hasegawa, Tomoki
  • Takahashi, Shingo
  • Kodama, Tatsuya

Abstract

Fe3O4 supported on cubic yttria-stabilized zirconia (Fe3O4/c-YSZ) is proposed as a promising redox material for the production of hydrogen from water via a thermochemical two-step water-splitting cycle. In this study, the evolution of oxygen and hydrogen during the cyclic reaction was examined using Fe3O4/c-YSZ particles in order to demonstrate reproducible and stoichometric oxygen/hydrogen production through a repeatable two-step reaction. Subsequently, a ceramic foam device coated with Fe3O4 and c-YSZ particles was prepared and examined as a thermochemical water-splitting device in a directly irradiated receiver/reactor hydrogen production system. The Fe3O4/c-YSZ system formed a Fe-containing YSZ (Fe-YSZ) by high-temperature reaction between Fe3O4 and the c-YSZ support at 1400°C in an inert atmosphere. The reaction mechanism of the two-step water-splitting cycle is associated with the redox transition of Fe2+–Fe3+ ions in the c-YSZ lattice. The Fe-YSZ particles exhibit good reproducibility for reaction with a hydrogen/oxygen ratio of approximately 2.0 throughout repeated cycles. The foam device coated with Fe-YSZ particles was also successful for continual hydrogen production through 32 repeated cycles. A 20–27% ferrite conversion was obtained using 10.5wt% Fe3O4 loading over an irradiation period of 60min.

Suggested Citation

  • Gokon, Nobuyuki & Hasegawa, Tomoki & Takahashi, Shingo & Kodama, Tatsuya, 2008. "Thermochemical two-step water-splitting for hydrogen production using Fe-YSZ particles and a ceramic foam device," Energy, Elsevier, vol. 33(9), pages 1407-1416.
  • Handle: RePEc:eee:energy:v:33:y:2008:i:9:p:1407-1416
    DOI: 10.1016/j.energy.2008.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544208001126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2008.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tamaura, Y. & Steinfeld, A. & Kuhn, P. & Ehrensberger, K., 1995. "Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle," Energy, Elsevier, vol. 20(4), pages 325-330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. dos Santos, Kenia Gabriela & Eckert, Caroline Thaís & De Rossi, Eduardo & Bariccatti, Reinaldo Aparecido & Frigo, Elisandro Pires & Lindino, Cleber Antonio & Alves, Helton José, 2017. "Hydrogen production in the electrolysis of water in Brazil, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 563-571.
    2. Agrafiotis, Christos & Roeb, Martin & Sattler, Christian, 2015. "A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 254-285.
    3. Xiao, Lan & Wu, Shuang-Ying & Li, You-Rong, 2012. "Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions," Renewable Energy, Elsevier, vol. 41(C), pages 1-12.
    4. Fan, Mei-qiang & Sun, Li-xian & Xu, Fen, 2010. "Feasibility study of hydrogen production for micro fuel cell from activated Al–In mixture in water," Energy, Elsevier, vol. 35(3), pages 1333-1337.
    5. Loghmani, Mohammad Hassan & Shojaei, Abdollah Fallah & Khakzad, Morteza, 2017. "Hydrogen generation as a clean energy through hydrolysis of sodium borohydride over Cu-Fe-B nano powders: Effect of polymers and surfactants," Energy, Elsevier, vol. 126(C), pages 830-840.
    6. Yang, Weijuan & Zhang, Tianyou & Liu, Jianzhong & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2015. "Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature," Energy, Elsevier, vol. 93(P1), pages 451-457.
    7. Daphne Oudejans & Michele Offidani & Achilleas Constantinou & Stefania Albonetti & Nikolaos Dimitratos & Atul Bansode, 2022. "A Comprehensive Review on Two-Step Thermochemical Water Splitting for Hydrogen Production in a Redox Cycle," Energies, MDPI, vol. 15(9), pages 1-24, April.
    8. Fan, Mei–qiang & Sun, Li–xian & Xu, Fen, 2010. "Experiment assessment of hydrogen production from activated aluminum alloys in portable generator for fuel cell applications," Energy, Elsevier, vol. 35(7), pages 2922-2926.
    9. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.
    10. Song, Lee-hwa & Kang, Hyun Woo & Park, Seung Bin, 2012. "Thermally stable iron based redox catalysts for the thermo-chemical hydrogen generation from water," Energy, Elsevier, vol. 42(1), pages 313-320.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rhodes, Nathan R. & Bobek, Michael M. & Allen, Kyle M. & Hahn, David W., 2015. "Investigation of long term reactive stability of ceria for use in solar thermochemical cycles," Energy, Elsevier, vol. 89(C), pages 924-931.
    2. Daphne Oudejans & Michele Offidani & Achilleas Constantinou & Stefania Albonetti & Nikolaos Dimitratos & Atul Bansode, 2022. "A Comprehensive Review on Two-Step Thermochemical Water Splitting for Hydrogen Production in a Redox Cycle," Energies, MDPI, vol. 15(9), pages 1-24, April.
    3. Alonso, Elisa & Pérez-Rábago, Carlos & Licurgo, Javier & Gallo, Alessandro & Fuentealba, Edward & Estrada, Claudio A., 2017. "Experimental aspects of CuO reduction in solar-driven reactors: Comparative performance of a rotary kiln and a packed-bed," Renewable Energy, Elsevier, vol. 105(C), pages 665-673.
    4. Hoskins, Amanda L. & Millican, Samantha L. & Czernik, Caitlin E. & Alshankiti, Ibraheam & Netter, Judy C. & Wendelin, Timothy J. & Musgrave, Charles B. & Weimer, Alan W., 2019. "Continuous on-sun solar thermochemical hydrogen production via an isothermal redox cycle," Applied Energy, Elsevier, vol. 249(C), pages 368-376.
    5. Tan, Taide & Chen, Yitung, 2010. "Review of study on solid particle solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 265-276, January.
    6. Koumi Ngoh, Simon & Njomo, Donatien, 2012. "An overview of hydrogen gas production from solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6782-6792.
    7. Christopher L. Muhich & Brian D. Ehrhart & Ibraheam Al-Shankiti & Barbara J. Ward & Charles B. Musgrave & Alan W. Weimer, 2016. "A review and perspective of efficient hydrogen generation via solar thermal water splitting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 261-287, May.
    8. Kaneko, H & Hosokawa, Y & Kojima, N & Gokon, N & Hasegawa, N & Kitamura, M & Tamaura, Y, 2001. "Studies on metal oxides suitable for enhancement of the O2-releasing step in water splitting by the MnFe2O4–Na2CO3 system," Energy, Elsevier, vol. 26(10), pages 919-929.
    9. Agrafiotis, Christos & Roeb, Martin & Sattler, Christian, 2015. "A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 254-285.
    10. Kaneko, H. & Miura, T. & Ishihara, H. & Taku, S. & Yokoyama, T. & Nakajima, H. & Tamaura, Y., 2007. "Reactive ceramics of CeO2–MOx (M=Mn, Fe, Ni, Cu) for H2 generation by two-step water splitting using concentrated solar thermal energy," Energy, Elsevier, vol. 32(5), pages 656-663.
    11. Fan, Mei-qiang & Sun, Li-xian & Xu, Fen, 2010. "Feasibility study of hydrogen production for micro fuel cell from activated Al–In mixture in water," Energy, Elsevier, vol. 35(3), pages 1333-1337.
    12. Agrafiotis, Christos & von Storch, Henrik & Roeb, Martin & Sattler, Christian, 2014. "Solar thermal reforming of methane feedstocks for hydrogen and syngas production—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 656-682.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:33:y:2008:i:9:p:1407-1416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.