IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2734-d175232.html
   My bibliography  Save this article

Analysis of Accuracy Determination of the Seasonal Heat Demand in Buildings Based on Short Measurement Periods

Author

Listed:
  • Joanna Ferdyn-Grygierek

    (Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Konarskiego 20, 44-100 Gliwice, Poland)

  • Dorota Bartosz

    (Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Konarskiego 20, 44-100 Gliwice, Poland)

  • Aleksandra Specjał

    (Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Konarskiego 20, 44-100 Gliwice, Poland)

  • Krzysztof Grygierek

    (Faculty of Civil Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland)

Abstract

In this paper, we present a multi-variant analysis of the determination of the accuracy of the seasonal heat demand in buildings. The research was based on the linear regression method for data obtained during short periods of measurement. The analyses were carried out using computer simulation, and the numerical models of the multifamily building and school building were used for the simulation. The simulations were performed using the TRNSYS, ESP-r, and CONTAM programs. The multi-zone models of the buildings were validated based on the measurement data. The impact of the building’s parameters (airtightness, insulation, and occupancy schedule) on the determination of the accuracy of the seasonal heat demand was analyzed. The analyses allowed guidelines to be developed for determining the seasonal energy consumption for heating and ventilation based on short periods of heat demand measurements and to determine the optimal duration of the measurement period.

Suggested Citation

  • Joanna Ferdyn-Grygierek & Dorota Bartosz & Aleksandra Specjał & Krzysztof Grygierek, 2018. "Analysis of Accuracy Determination of the Seasonal Heat Demand in Buildings Based on Short Measurement Periods," Energies, MDPI, vol. 11(10), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2734-:d:175232
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2734/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2734/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ana Ogando & Natalia Cid & Marta Fernández, 2017. "Energy Modelling and Automated Calibrations of Ancient Building Simulations: A Case Study of a School in the Northwest of Spain," Energies, MDPI, vol. 10(6), pages 1-17, June.
    2. Braun, M.R. & Altan, H. & Beck, S.B.M., 2014. "Using regression analysis to predict the future energy consumption of a supermarket in the UK," Applied Energy, Elsevier, vol. 130(C), pages 305-313.
    3. Afram, Abdul & Janabi-Sharifi, Farrokh, 2015. "Gray-box modeling and validation of residential HVAC system for control system design," Applied Energy, Elsevier, vol. 137(C), pages 134-150.
    4. Francesco Calise & Rafal Damian Figaj & Laura Vanoli, 2018. "Energy and Economic Analysis of Energy Savings Measures in a Swimming Pool Centre by Means of Dynamic Simulations," Energies, MDPI, vol. 11(9), pages 1-27, August.
    5. Ilaria Ballarini & Vincenzo Corrado, 2017. "A New Methodology for Assessing the Energy Consumption of Building Stocks," Energies, MDPI, vol. 10(8), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kotarela, Faidra & Kyritsis, Anastasios & Agathokleous, Rafaela & Papanikolaou, Nick, 2023. "On the exploitation of dynamic simulations for the design of buildings energy systems," Energy, Elsevier, vol. 271(C).
    2. Jun-Woo Choi & Yong-Joon Jun & Jin-ha Yoon & Young-hak Song & Kyung-Soon Park, 2019. "A Study of Energy Simulation Integrated Process by Automated Extraction Module of the BIM Geometry Module," Energies, MDPI, vol. 12(13), pages 1-12, June.
    3. Jesica Fernández-Agüera & Samuel Domínguez-Amarillo & Miguel Ángel Campano, 2019. "Characterising Draught in Mediterranean Multifamily Housing," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    4. Aleksandra Specjał & Aleksandra Lipczyńska & Maria Hurnik & Małgorzata Król & Agnieszka Palmowska & Zbigniew Popiołek, 2019. "Case Study of Thermal Diagnostics of Single-Family House in Temperate Climate," Energies, MDPI, vol. 12(23), pages 1-20, November.
    5. Piotr Ciuman & Jan Kaczmarczyk, 2021. "Numerical Analysis of the Energy Consumption of Ventilation Processes in the School Swimming Pool," Energies, MDPI, vol. 14(4), pages 1-18, February.
    6. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "Modeling, air balancing and optimal pressure set-point selection for the ventilation system with minimized energy consumption," Applied Energy, Elsevier, vol. 236(C), pages 574-589.
    2. Chen, Zhiwen & Deng, Qiao & Ren, Hao & Zhao, Zhengrun & Peng, Tao & Yang, Chunhua & Gui, Weihua, 2022. "A new energy consumption prediction method for chillers based on GraphSAGE by combining empirical knowledge and operating data," Applied Energy, Elsevier, vol. 310(C).
    3. Figaj, Rafał & Żołądek, Maciej, 2021. "Experimental and numerical analysis of hybrid solar heating and cooling system for a residential user," Renewable Energy, Elsevier, vol. 172(C), pages 955-967.
    4. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    5. Anna Kipping & Erik Trømborg, 2017. "Modeling Aggregate Hourly Energy Consumption in a Regional Building Stock," Energies, MDPI, vol. 11(1), pages 1-20, December.
    6. Lork, Clement & Li, Wen-Tai & Qin, Yan & Zhou, Yuren & Yuen, Chau & Tushar, Wayes & Saha, Tapan K., 2020. "An uncertainty-aware deep reinforcement learning framework for residential air conditioning energy management," Applied Energy, Elsevier, vol. 276(C).
    7. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
    8. Hanan S.S. Ibrahim & Ahmed Z. Khan & Shady Attia & Yehya Serag, 2021. "Classification of Heritage Residential Building Stock and Defining Sustainable Retrofitting Scenarios in Khedivial Cairo," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    9. Piotr Ciuman & Jan Kaczmarczyk, 2021. "Numerical Analysis of the Energy Consumption of Ventilation Processes in the School Swimming Pool," Energies, MDPI, vol. 14(4), pages 1-18, February.
    10. Ahmad, Tanveer & Chen, Huanxin & Huang, Ronggeng & Yabin, Guo & Wang, Jiangyu & Shair, Jan & Azeem Akram, Hafiz Muhammad & Hassnain Mohsan, Syed Agha & Kazim, Muhammad, 2018. "Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment," Energy, Elsevier, vol. 158(C), pages 17-32.
    11. Khamma, Thulasi Ram & Zhang, Yuming & Guerrier, Stéphane & Boubekri, Mohamed, 2020. "Generalized additive models: An efficient method for short-term energy prediction in office buildings," Energy, Elsevier, vol. 213(C).
    12. Beyca, Omer Faruk & Ervural, Beyzanur Cayir & Tatoglu, Ekrem & Ozuyar, Pinar Gokcin & Zaim, Selim, 2019. "Using machine learning tools for forecasting natural gas consumption in the province of Istanbul," Energy Economics, Elsevier, vol. 80(C), pages 937-949.
    13. Yannan Zhou & Jixia Huang & Mingxiang Huang & Yicheng Lin, 2019. "The Driving Forces of Carbon Dioxide Equivalent Emissions Have Spatial Spillover Effects in Inner Mongolia," IJERPH, MDPI, vol. 16(10), pages 1-14, May.
    14. Avichal Malhotra & Simon Raming & Jérôme Frisch & Christoph van Treeck, 2021. "Open-Source Tool for Transforming CityGML Levels of Detail," Energies, MDPI, vol. 14(24), pages 1-26, December.
    15. Homod, Raad Z. & Gaeid, Khalaf S. & Dawood, Suroor M. & Hatami, Alireza & Sahari, Khairul S., 2020. "Evaluation of energy-saving potential for optimal time response of HVAC control system in smart buildings," Applied Energy, Elsevier, vol. 271(C).
    16. Prades-Gil, C. & Viana-Fons, J.D. & Masip, X. & Cazorla-Marín, A. & Gómez-Navarro, T., 2023. "An agile heating and cooling energy demand model for residential buildings. Case study in a mediterranean city residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    17. Rafał Figaj & Maciej Żołądek & Wojciech Goryl, 2020. "Dynamic Simulation and Energy Economic Analysis of a Household Hybrid Ground-Solar-Wind System Using TRNSYS Software," Energies, MDPI, vol. 13(14), pages 1-27, July.
    18. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    19. Afroz, Zakia & Urmee, Tania & Shafiullah, G.M. & Higgins, Gary, 2018. "Real-time prediction model for indoor temperature in a commercial building," Applied Energy, Elsevier, vol. 231(C), pages 29-53.
    20. Hamed Yassaghi & Simi Hoque, 2021. "Impact Assessment in the Process of Propagating Climate Change Uncertainties into Building Energy Use," Energies, MDPI, vol. 14(2), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2734-:d:175232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.