IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224033875.html
   My bibliography  Save this article

Assisting denitrification and strengthening combustion by using ammonia/coal binary fuel gasification-combustion: Effects of injecting position and air distribution

Author

Listed:
  • Cui, Baochong
  • Wang, Xiaoxiao
  • Yu, Shilin
  • Zhang, Kejie
  • Zhang, Yingjie
  • Ruan, Renhui
  • Wang, Xuebin
  • Tan, Houzhang

Abstract

The direct co-firing of ammonia (NH3) with coal is an effective approach for reducing carbon emissions from coal-fired plants. However, the limitations of NH3 combustion, such as its high ignition energy requirement and high NOx emissions, restrict its large-scale co-combustion in coal-fired units. In this study, a self-sustaining gasification–combustion experimental system was employed, and its denitrification performance and combustion strengthening capability for NH3/coal binary fuel under different NH3 injection positions and air distribution methods were evaluated. The results of co-firing 20 % NH3 in the gasifier revealed that its operating temperature can be flexibly controlled within the optimal reaction temperature window of SNCR by adjusting the primary air ratio (λ1). Increasing λ1 was beneficial for NH3 and coal conversion and denitrification in the gasifier; at λ1 = 0.53, the conversion rate of NH3 and N2 reached 86.37 % and 83.59 %, respectively, with no NOx being detected at the gasifier outlet. Furthermore, increasing λ1 promoted the development of gasified char pore structure, thereby improving reactivity. After entering the down-fired combustor (DFC), increasing λ1 promoted NH3 and coal burnout and effectively controlled NOx emissions, reaching a level similar with that of pure coal under λ1 = 0.53. Co-firing 20 % NH3 in the DFC also demonstrated that the introduction of inner secondary air was conducive to char burnout, however, increased NH3 slip. The outer secondary air promoted NH3 combustion, however, exacerbated NOx emissions and inhibited gasified char combustion. The uniform air distribution method balanced the combustion of NH3 and gasified char, and effectively controlled NOx emissions. When the same air distribution method was used, co-firing NH3 in the gasifier was more favourable for NOx control, whereas co-firing NH3 in the DFC benefited coal burnout. This study provides innovative ideas and serves as a reference for developing enhanced combustion and low NOx emission technologies for large-scale NH3 co-firing in coal-fired units.

Suggested Citation

  • Cui, Baochong & Wang, Xiaoxiao & Yu, Shilin & Zhang, Kejie & Zhang, Yingjie & Ruan, Renhui & Wang, Xuebin & Tan, Houzhang, 2024. "Assisting denitrification and strengthening combustion by using ammonia/coal binary fuel gasification-combustion: Effects of injecting position and air distribution," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033875
    DOI: 10.1016/j.energy.2024.133609
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224033875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Mingyu & Chen, Sheng & Zhu, Hongwei & Zhou, Zijian & Xu, Jingying, 2023. "Numerical investigation of ammonia/coal co-combustion in a low NOx swirl burner," Energy, Elsevier, vol. 282(C).
    2. Cai, Tao & Zhao, Dan, 2022. "Enhancing and assessing ammonia-air combustion performance by blending with dimethyl ether," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Kim, Seong-Ju & Park, Sung-Jin & Jo, Sung-Ho & Lee, Hookyung & Yoon, Sang-Jun & Moon, Ji-Hong & Ra, Ho-Won & Yoon, Sung-Min & Lee, Jae-Goo & Mun, Tae-Young, 2023. "Effects of ammonia co-firing ratios and injection positions in the coal–ammonia co-firing process in a circulating fluidized bed combustion test rig," Energy, Elsevier, vol. 282(C).
    4. Jiang, Yu & Lee, Byoung-Hwa & Oh, Dong-Hun & Jeon, Chung-Hwan, 2022. "Influence of various air-staging on combustion and NOX emission characteristics in a tangentially fired boiler under the 50% load condition," Energy, Elsevier, vol. 244(PB).
    5. Tamura, Masato & Gotou, Takahiro & Ishii, Hiroki & Riechelmann, Dirk, 2020. "Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace," Applied Energy, Elsevier, vol. 277(C).
    6. Fang, Shiwen & Deng, Zhengbing & Lin, Yan & Huang, Zhen & Ding, Lixing & Deng, Lisheng & Huang, Hongyu, 2021. "Investigation of the nitrogen migration characteristics in sewage sludge during chemical looping gasification," Energy, Elsevier, vol. 216(C).
    7. Jeong, Hyo Jae & Seo, Dong Kyun & Hwang, Jungho, 2014. "CFD modeling for coal size effect on coal gasification in a two-stage commercial entrained-bed gasifier with an improved char gasification model," Applied Energy, Elsevier, vol. 123(C), pages 29-36.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Kun & Cheng, Leming & Zhao, Xin & Wang, Bo & Zhang, Qingyu & Zhu, Leigang & Kang, Qixun & Ma, Zhangke, 2024. "Experimental study of NH3 and coal Co-firing in a CFB and its nitrogen conversion," Energy, Elsevier, vol. 304(C).
    2. Zeng, Yijie & Kweon, Joonwoo & Kim, Gyeong-Min & Jeon, Chung-Hwan, 2024. "Carbon-free power generation strategy in South Korea: CFD simulation for ammonia injection strategies through boiler burner configurations in tangentially fired boiler," Energy, Elsevier, vol. 309(C).
    3. Xiang Lin & Xin Lei & Chen Wang & Xuehui Jing & Wei Liu & Lijiang Dong & Qiaozhen Wang & Hao Lu, 2024. "Numerical Simulation Study of Hydrogen Blending Combustion in Swirl Pulverized Coal Burner," Energies, MDPI, vol. 17(1), pages 1-17, January.
    4. Liu, Mingyu & Chen, Sheng & Zhu, Hongwei & Zhou, Zijian & Xu, Jingying, 2023. "Numerical investigation of ammonia/coal co-combustion in a low NOx swirl burner," Energy, Elsevier, vol. 282(C).
    5. Zhao, He & Zhao, Dan & Sun, Dakun & Semlitsch, Bernhard, 2024. "Electrical power, energy efficiency, NO and CO emissions investigations of an ammonia/methane-fueled micro-thermal photovoltaic system with a reduced chemical reaction mechanism," Energy, Elsevier, vol. 305(C).
    6. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    7. Yu, Yulong & Lv, Shuangyu & Wang, Qiuyu & Xian, Lei & Chen, Lei & Tao, Wen-Quan, 2024. "A two-stage framework for quantifying the impact of operating parameters and optimizing power density and oxygen distribution quality of PEMFC," Renewable Energy, Elsevier, vol. 236(C).
    8. Cai, Tao & Zhao, Dan & Chan, Siew Hwa & Shahsavari, Mohammad, 2022. "Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures," Energy, Elsevier, vol. 260(C).
    9. Zhao, Fei & Li, Yalou & Zhou, Xiaoxin & Wang, Dandan & Wei, Yawei & Li, Fang, 2023. "Co-optimization of decarbonized operation of coal-fired power plants and seasonal storage based on green ammonia co-firing," Applied Energy, Elsevier, vol. 341(C).
    10. Chen, Zhijie & Zuo, Wei & Zhou, Kun & Li, Qingqing & Huang, Yuhan & E, Jiaqiang, 2023. "Multi-factor impact mechanism on the performance of high temperature proton exchange membrane fuel cell," Energy, Elsevier, vol. 278(PB).
    11. Liu, Jintao & Chen, Liangchao & Xu, Wei & Feng, Mingfei & Han, Yongming & Xia, Tao & Geng, Zhiqiang, 2023. "Novel production prediction model of gasoline production processes for energy saving and economic increasing based on AM-GRU integrating the UMAP algorithm," Energy, Elsevier, vol. 262(PB).
    12. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    13. Tan, Dongli & Meng, Yujun & Tian, Jie & Zhang, Chengtao & Zhang, Zhiqing & Yang, Guanhua & Cui, Shuwan & Hu, Jingyi & Zhao, Ziheng, 2023. "Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies," Energy, Elsevier, vol. 269(C).
    14. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    15. Schulze, S. & Richter, A. & Vascellari, M. & Gupta, A. & Meyer, B. & Nikrityuk, P.A., 2016. "Novel intrinsic-based submodel for char particle gasification in entrained-flow gasifiers: Model development, validation and illustration," Applied Energy, Elsevier, vol. 164(C), pages 805-814.
    16. Lin, Zhelong & Liu, Shang & Qi, Yunliang & Chen, Qingchu & Wang, Zhi, 2024. "Experimental study on the performance of a high compression ratio SI engine using alcohol/ammonia fuel," Energy, Elsevier, vol. 289(C).
    17. Xu, Shunta & Xi, Liyang & Tian, Songjie & Tu, Yaojie & Chen, Sheng & Zhang, Shihong & Liu, Hao, 2023. "Numerical investigation of pressure and H2O dilution effects on NO formation and reduction pathways in pure hydrogen MILD combustion," Applied Energy, Elsevier, vol. 350(C).
    18. Ma, Ying & Yang, Heng & Zuo, Hongyan & Zuo, Qingsong & He, Xiaoxiang & Chen, Wei & Wei, Rongrong, 2023. "EG@Bi-MOF derived porous carbon/lauric acid composite phase change materials for thermal management of batteries," Energy, Elsevier, vol. 272(C).
    19. Gao, Sheng & Zhang, Yanhui & Zhang, Zhiqing & Tan, Dongli & Li, Junming & Yin, Zibin & Hu, Jingyi & Zhao, Ziheng, 2023. "Multi-objective optimization of the combustion chamber geometry for a highland diesel engine fueled with diesel/n-butanol/PODEn by ANN-NSGA III," Energy, Elsevier, vol. 282(C).
    20. Wang, Yanhong & Li, Xiaoyu & Mao, Tianqin & Hu, Pengfei & Li, Xingcan & GuanWang,, 2022. "Mechanism modeling of optimal excess air coefficient for operating in coal fired boiler," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.