IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223023472.html
   My bibliography  Save this article

Effects of ammonia co-firing ratios and injection positions in the coal–ammonia co-firing process in a circulating fluidized bed combustion test rig

Author

Listed:
  • Kim, Seong-Ju
  • Park, Sung-Jin
  • Jo, Sung-Ho
  • Lee, Hookyung
  • Yoon, Sang-Jun
  • Moon, Ji-Hong
  • Ra, Ho-Won
  • Yoon, Sung-Min
  • Lee, Jae-Goo
  • Mun, Tae-Young

Abstract

Ammonia (NH3) co-firing is a promising technology for reducing greenhouse gas emissions in coal-fired power plants. Prior to commercialization, an experimental study on coal–NH3 co-firing in a pilot-scale circulating fluidized bed (CFB) combustion test rig was conducted for technical verification. The comprehensive combustion characteristics, including pollutant emission, combustion efficiency, and ash properties, of NH3 co-firing with sub-bituminous coal in a CFB combustion test rig and the CO2 reduction according to NH3 co-firing ratios under two different injection positions (dense bed zone (DBZ) and wind box (WB) with primary air) were investigated. When NH3 was injected at the DBZ, NO emissions decreased as the NH3 co-firing ratio increased and CO emissions increased more rapidly than with only coal-fired combustion. Compared with only coal-fired combustion, a 25.4% NH3 co-firing ratio at the WB position simultaneously reduced NO and CO concentrations, achieving the highest combustion efficiency without ash-related problems. However, N2O emissions increased by > 1.5 times, indicating the formation of N intermediates during NH3 burning. Therefore, with minor retrofitting, coal–NH3 co-firing at the WB position is a feasible solution for simultaneously reducing CO2, NO, and CO emissions in commercial CFB combustion plants.

Suggested Citation

  • Kim, Seong-Ju & Park, Sung-Jin & Jo, Sung-Ho & Lee, Hookyung & Yoon, Sang-Jun & Moon, Ji-Hong & Ra, Ho-Won & Yoon, Sung-Min & Lee, Jae-Goo & Mun, Tae-Young, 2023. "Effects of ammonia co-firing ratios and injection positions in the coal–ammonia co-firing process in a circulating fluidized bed combustion test rig," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023472
    DOI: 10.1016/j.energy.2023.128953
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mun, Tae-Young & Tumsa, Tefera Zelalem & Lee, Uendo & Yang, Won, 2016. "Performance evaluation of co-firing various kinds of biomass with low rank coals in a 500 MWe coal-fired power plant," Energy, Elsevier, vol. 115(P1), pages 954-962.
    2. Fan, Weidong & Li, Yu & Guo, Qinghong & Chen, Can & Wang, Yong, 2017. "Coal-nitrogen release and NOx evolution in the oxidant-staged combustion of coal," Energy, Elsevier, vol. 125(C), pages 417-426.
    3. Tamura, Masato & Gotou, Takahiro & Ishii, Hiroki & Riechelmann, Dirk, 2020. "Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace," Applied Energy, Elsevier, vol. 277(C).
    4. Lucia Álvarez & Juan Riaza & Maria V. Gil & Covadonga Pevida & José J. Pis & Fernando Rubiera, 2011. "NO emissions in oxy‐coal combustion with the addition of steam in an entrained flow reactor," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 1(2), pages 180-190, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    2. Wander, Paulo R. & Bianchi, Flávio M. & Caetano, Nattan R. & Klunk, Marcos A. & Indrusiak, Maria Luiza S., 2020. "Cofiring low-rank coal and biomass in a bubbling fluidized bed with varying excess air ratio and fluidization velocity," Energy, Elsevier, vol. 203(C).
    3. Díez, Luis I. & García-Mariaca, Alexander & Canalís, Paula & Llera, Eva, 2023. "Oxy-combustion characteristics of torrefied biomass and blends under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres," Energy, Elsevier, vol. 284(C).
    4. Zhao, Fei & Li, Yalou & Zhou, Xiaoxin & Wang, Dandan & Wei, Yawei & Li, Fang, 2023. "Co-optimization of decarbonized operation of coal-fired power plants and seasonal storage based on green ammonia co-firing," Applied Energy, Elsevier, vol. 341(C).
    5. Sher, Farooq & Yaqoob, Aqsa & Saeed, Farrukh & Zhang, Shengfu & Jahan, Zaib & Klemeš, Jiří Jaromír, 2020. "Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation," Energy, Elsevier, vol. 209(C).
    6. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    7. Caposciutti, Gianluca & Antonelli, Marco, 2018. "Experimental investigation on air displacement and air excess effect on CO, CO2 and NOx emissions of a small size fixed bed biomass boiler," Renewable Energy, Elsevier, vol. 116(PA), pages 795-804.
    8. Huang, Junxuan & Liao, Yanfen & Lin, Jianhua & Dou, Changjiang & Huang, Zengxiu & Yu, Xiongwei & Yu, Zhaosheng & Chen, Chunxiang & Ma, Xiaoqian, 2024. "Numerical simulation of the co-firing of pulverized coal and eucalyptus wood in a 1000MWth opposed wall-fired boiler," Energy, Elsevier, vol. 298(C).
    9. Yadav, Sujeet & Yu, Panlong & Tanno, Kenji & Watanabe, Hiroaki, 2023. "Large eddy simulation of coal-ammonia flames with varied ammonia injection locations using a flamelet-based approach," Energy, Elsevier, vol. 276(C).
    10. Li, Xinzhuo & Choi, Minsung & Jung, Chanho & Park, Yeseul & Choi, Gyungmin, 2022. "Effects of the staging position and air−LPG mixing ratio on the combustion and emission characteristics of coal and gas co-firing," Energy, Elsevier, vol. 254(PB).
    11. João Sousa Cardoso & Valter Silva & Jose Antonio Chavando & Daniela Eusébio & Matthew J. Hall, 2024. "Process Optimization and Robustness Analysis of Ammonia–Coal Co-Firing in a Pilot-Scale Fluidized Bed Reactor," Energies, MDPI, vol. 17(9), pages 1-20, April.
    12. Nguyen, Hoang Khoi & Moon, Ji-Hong & Jo, Sung-Ho & Park, Sung Jin & Seo, Myung Won & Ra, Ho Won & Yoon, Sang-Jun & Yoon, Sung-Min & Song, Byungho & Lee, Uendo & Yang, Chang Won & Mun, Tae-Young & Lee,, 2020. "Oxy-combustion characteristics as a function of oxygen concentration and biomass co-firing ratio in a 0.1 MWth circulating fluidized bed combustion test-rig," Energy, Elsevier, vol. 196(C).
    13. Engin, Berrin & Kayahan, Ufuk & Atakül, Hüsnü, 2020. "A comparative study on the air, the oxygen-enriched air and the oxy-fuel combustion of lignites in CFB," Energy, Elsevier, vol. 196(C).
    14. Wang, Zhuozhi & Sun, Rui & Zhao, Yaying & Li, Yupeng & Ren, Xiaohan, 2019. "Effect of steam concentration on demineralized coal char surface behaviors and structural characteristics during the oxy-steam combustion process," Energy, Elsevier, vol. 174(C), pages 339-349.
    15. Pronobis, Marek & Wejkowski, Robert & Kalisz, Sylwester & Ciukaj, Szymon, 2023. "Conversion of a pulverized coal boiler into a torrefied biomass boiler," Energy, Elsevier, vol. 262(PB).
    16. Nabila, Rakhmawati & Hidayat, Wahyu & Haryanto, Agus & Hasanudin, Udin & Iryani, Dewi Agustina & Lee, Sihyun & Kim, Sangdo & Kim, Soohyun & Chun, Donghyuk & Choi, Hokyung & Im, Hyuk & Lim, Jeonghwan &, 2023. "Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    17. Jae-Hyun Park & Young-Chan Choi & Young-Joo Lee & Hyung-Taek Kim, 2020. "Characteristics of Miscanthus Fuel by Wet Torrefaction on Fuel Upgrading and Gas Emission Behavior," Energies, MDPI, vol. 13(10), pages 1-10, May.
    18. Yuan, Zhenhua & Chen, Zhichao & Bian, Liguo & Li, Zhengqi, 2023. "Influence of over-fired air location on gas-particle flow characteristics within a coal-fired industrial boiler under radial air staging," Energy, Elsevier, vol. 283(C).
    19. Yi, Qun & Zhao, Yingjie & Huang, Yi & Wei, Guoqiang & Hao, Yanhong & Feng, Jie & Mohamed, Usama & Pourkashanian, Mohamed & Nimmo, William & Li, Wenying, 2018. "Life cycle energy-economic-CO2 emissions evaluation of biomass/coal, with and without CO2 capture and storage, in a pulverized fuel combustion power plant in the United Kingdom," Applied Energy, Elsevier, vol. 225(C), pages 258-272.
    20. Pan, Suyang & Ma, Jiliang & Chen, Xiaoping & Liu, Daoyin & Liang, Cai, 2023. "NH3/O2 premixed combustion in a single bubble of fluidized bed," Applied Energy, Elsevier, vol. 349(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.