IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223017528.html
   My bibliography  Save this article

Numerical investigation of ammonia/coal co-combustion in a low NOx swirl burner

Author

Listed:
  • Liu, Mingyu
  • Chen, Sheng
  • Zhu, Hongwei
  • Zhou, Zijian
  • Xu, Jingying

Abstract

Co-firing of ammonia (NH3) and coal in boilers is a promising technology to reduce CO2 emissions from power plants. However, NH3/coal co-firing in swirl burners can impact the original flame structures and may lead to serious NOx emission issues due to the high concentration of nitrogen in NH3. In this study, a numerical simulation of a low-NOx swirl burner was carried out to investigate the changes in flame structure, carbon emission, and characteristics of NOx generation. The results show that, when the NH3 co-firing ratio is 10 cal%, the flame retains its original swirl structure, and a significant increase in NO formation is observed in situations with different injection positions. When the co-firing ratio increases to 20 cal% and 30 cal% and NH3 is injected through the central air pipe, the flame changes from a swirl flame to an elongated flame. The injected NH3 is wrapped by the low-temperature primary air, separating the NH3 from the high-temperature zone, and pyrolysis becomes the primary reaction pathway for NH3 consumption rather than oxidation. The NO concentrations measured at the chamber outlet can be reduced to 11.2mg/Nm3, which is lower than that from coal combustion. As the co-firing ratio further increases to 50 cal%, NH3 and air are well mixed and burned, forming a “candle-type” flame. This results in a significant rise in NO emissions.

Suggested Citation

  • Liu, Mingyu & Chen, Sheng & Zhu, Hongwei & Zhou, Zijian & Xu, Jingying, 2023. "Numerical investigation of ammonia/coal co-combustion in a low NOx swirl burner," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017528
    DOI: 10.1016/j.energy.2023.128358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223017528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128358?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Guang & Zhou, Anqi & Fu, Jinming & Ji, Yang, 2022. "Experimental and numerical investigations on NOx formation and reduction mechanisms of pulverized-coal stereo-staged combustion," Energy, Elsevier, vol. 261(PB).
    2. Choi, Minsung & Park, Yeseul & Li, Xinzhuo & Kim, Kibeom & Sung, Yonmo & Hwang, Taegam & Choi, Gyungmin, 2021. "Numerical evaluation of pulverized coal swirling flames and NOx emissions in a coal-fired boiler: Effects of co- and counter-swirling flames and coal injection modes," Energy, Elsevier, vol. 217(C).
    3. Yan, Rong & Chen, Zhichao & Zhang, Bo & Zheng, Yu & Li, Zhengqi, 2022. "Impact of radial air staging on gas-particle flow characteristics in an industrial pulverized coal boiler," Energy, Elsevier, vol. 243(C).
    4. Li, Yu & Fan, Weidong, 2016. "Effect of char gasification on NOx formation process in the deep air-staged combustion in a 20kW down flame furnace," Applied Energy, Elsevier, vol. 164(C), pages 258-267.
    5. Jiang, Yu & Lee, Byoung-Hwa & Oh, Dong-Hun & Jeon, Chung-Hwan, 2022. "Influence of various air-staging on combustion and NOX emission characteristics in a tangentially fired boiler under the 50% load condition," Energy, Elsevier, vol. 244(PB).
    6. Tamura, Masato & Gotou, Takahiro & Ishii, Hiroki & Riechelmann, Dirk, 2020. "Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace," Applied Energy, Elsevier, vol. 277(C).
    7. Chen, Danan & Li, Jun & Li, Xing & Deng, Lisheng & He, Zhaohong & Huang, Hongyu & Kobayashi, Noriyuki, 2023. "Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner," Energy, Elsevier, vol. 263(PA).
    8. Benim, Ali Cemal & Deniz Canal, Cansu & Boke, Yakup Erhan, 2022. "Computational investigation of oxy-combustion of pulverized coal and biomass in a swirl burner," Energy, Elsevier, vol. 238(PC).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Lin & Xin Lei & Chen Wang & Xuehui Jing & Wei Liu & Lijiang Dong & Qiaozhen Wang & Hao Lu, 2024. "Numerical Simulation Study of Hydrogen Blending Combustion in Swirl Pulverized Coal Burner," Energies, MDPI, vol. 17(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xinzhuo & Choi, Minsung & Jung, Chanho & Park, Yeseul & Choi, Gyungmin, 2022. "Effects of the staging position and air−LPG mixing ratio on the combustion and emission characteristics of coal and gas co-firing," Energy, Elsevier, vol. 254(PB).
    2. Mohammadpour, Mohammadreza & Ashjaee, Mehdi & Houshfar, Ehsan, 2022. "Thermal performance and heat transfer characteristics analyses of oxy-biogas combustion in a swirl stabilized boiler under various oxidizing environments," Energy, Elsevier, vol. 261(PA).
    3. Yuan, Zhenhua & Chen, Zhichao & Bian, Liguo & Wu, Xiaolan & Zhang, Bo & Li, Jiawei & Qiao, Yanyu & Li, Zhengqi, 2023. "Influence of blade angle in the outer secondary air for swirl burner on the flow, combustion, and slagging characteristics in the pre-combustion chamber under the air-staged condition," Energy, Elsevier, vol. 275(C).
    4. Choi, Minsung & Hwang, Taegam & Park, Yeseul & Li, Xinzhuo & Kim, Junsung & Kim, Kibeom & Sung, Yonmo & Choi, Gyungmin, 2023. "Numerical evaluation of the effect of swirl configuration and fuel-rich environment on combustion and emission characteristics in a coal-fired boiler," Energy, Elsevier, vol. 268(C).
    5. Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
    6. Zhao, Fei & Li, Yalou & Zhou, Xiaoxin & Wang, Dandan & Wei, Yawei & Li, Fang, 2023. "Co-optimization of decarbonized operation of coal-fired power plants and seasonal storage based on green ammonia co-firing," Applied Energy, Elsevier, vol. 341(C).
    7. Yiwei Wang & Yuan Wang & Sunhua Deng & Qiang Li & Jingjing Gu & Haoche Shui & Wei Guo, 2022. "Numerical Simulation Analysis of Heating Effect of Downhole Methane Catalytic Combustion Heater under High Pressure," Energies, MDPI, vol. 15(3), pages 1-23, February.
    8. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    9. Donato Cecere & Matteo Cimini & Simone Carpenella & Jan Caldarelli & Eugenio Giacomazzi, 2024. "Composition and Injection Angle Effects on Combustion of an NH 3 /H 2 /N 2 Jet in an Air Crossflow," Energies, MDPI, vol. 17(20), pages 1-21, October.
    10. Huang, Junxuan & Liao, Yanfen & Lin, Jianhua & Dou, Changjiang & Huang, Zengxiu & Yu, Xiongwei & Yu, Zhaosheng & Chen, Chunxiang & Ma, Xiaoqian, 2024. "Numerical simulation of the co-firing of pulverized coal and eucalyptus wood in a 1000MWth opposed wall-fired boiler," Energy, Elsevier, vol. 298(C).
    11. Wang, Yanhong & Li, Xiaoyu & Mao, Tianqin & Hu, Pengfei & Li, Xingcan & GuanWang,, 2022. "Mechanism modeling of optimal excess air coefficient for operating in coal fired boiler," Energy, Elsevier, vol. 261(PA).
    12. Yadav, Sujeet & Yu, Panlong & Tanno, Kenji & Watanabe, Hiroaki, 2023. "Large eddy simulation of coal-ammonia flames with varied ammonia injection locations using a flamelet-based approach," Energy, Elsevier, vol. 276(C).
    13. Ling, Zhongqian & Ling, Bo & Kuang, Min & Li, Zhengqi & Lu, Ye, 2017. "Comparison of airflow, coal combustion, NOx emissions, and slagging characteristics among three large-scale MBEL down-fired boilers manufactured at different times," Applied Energy, Elsevier, vol. 187(C), pages 689-705.
    14. Wu, Xiaofeng & Fan, Weidong & Liu, Yacheng & Bian, Bao, 2019. "Numerical simulation research on the unique thermal deviation in a 1000 MW tower type boiler," Energy, Elsevier, vol. 173(C), pages 1006-1020.
    15. João Sousa Cardoso & Valter Silva & Jose Antonio Chavando & Daniela Eusébio & Matthew J. Hall, 2024. "Process Optimization and Robustness Analysis of Ammonia–Coal Co-Firing in a Pilot-Scale Fluidized Bed Reactor," Energies, MDPI, vol. 17(9), pages 1-20, April.
    16. Chen, Zhichao & Qiao, Yanyu & Guan, Shuo & Wang, Zhenwang & Zheng, Yu & Zeng, Lingyan & Li, Zhengqi, 2022. "Effect of inner and outer secondary air ratios on ignition, C and N conversion process of pulverized coal in swirl burner under sub-stoichiometric ratio," Energy, Elsevier, vol. 239(PD).
    17. Lv, Chengkun & Huang, Qian & Lan, Zhu & Chang, Juntao & Yu, Daren, 2023. "Parametric optimization and exergy analysis of a high mach number aeroengine with an ammonia mass injection pre-compressor cooling cycle," Energy, Elsevier, vol. 282(C).
    18. Yu Jiang & Zihua Tang & Xiaoyu Zhang & Chao Wang & Guoliang Song & Qinggang Lyu, 2023. "Comparative Analysis of Combustion Characteristics of a CFB Boiler during the Changes Process between High-Rated Loads and Low-Rated Loads," Energies, MDPI, vol. 16(17), pages 1-15, August.
    19. Zeng, Guang & Zhou, Anqi & Fu, Jinming & Ji, Yang, 2022. "Experimental and numerical investigations on NOx formation and reduction mechanisms of pulverized-coal stereo-staged combustion," Energy, Elsevier, vol. 261(PB).
    20. Yuan, Zhenhua & Chen, Zhichao & Bian, Liguo & Li, Zhengqi, 2023. "Influence of over-fired air location on gas-particle flow characteristics within a coal-fired industrial boiler under radial air staging," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.