IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223019047.html
   My bibliography  Save this article

A two-channel deep network based model for improving ultra-short-term prediction of wind power via utilizing multi-source data

Author

Listed:
  • Liu, Hong
  • Yang, Luoxiao
  • Zhang, Bingying
  • Zhang, Zijun

Abstract

Data-driven predictions of wind turbine power outputs have received numerous discussions with using turbine data from the supervisory control and data acquisition (SCADA) system itself. It is of a high curiosity on studying the feasibility of extending the prediction capability with additionally considering data of other sources and the data-driven modeling principle of doing so. To respond such problem and introduce more innovative prediction techniques, this paper presents a pioneering attempt of studying a two-channel deep network modeling method for wind power predictions which leverage both the wind farm data and farm geoinformation. Novelty can be profiled as follows: 1) To accommodate multi-source data in the input, a new high-dimensional input form of two components, a tensor and a graph, is developed; 2) To advance predictions with such input, a deep graph attention convolutional recurrent (GACR) method, which develops one novel deep network channel with stacking multiple graph convolution and long short term memory (GCN-LSTM) layers for engineering high-level latent features from high-dimensional inputs and another classical feature selection channel for directly engaging valuable wind turbine attributes, is proposed. Comprehensive computational experiments are conducted to verify the value of such modeling development by comparing it with a set of competitive benchmarking models. An ablation study is also conducted to explain the necessity and value of network modules in the proposed method. A new state-of-the-art prediction performance is achieved.

Suggested Citation

  • Liu, Hong & Yang, Luoxiao & Zhang, Bingying & Zhang, Zijun, 2023. "A two-channel deep network based model for improving ultra-short-term prediction of wind power via utilizing multi-source data," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223019047
    DOI: 10.1016/j.energy.2023.128510
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223019047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Hui & Chen, Chao, 2019. "Multi-objective data-ensemble wind speed forecasting model with stacked sparse autoencoder and adaptive decomposition-based error correction," Applied Energy, Elsevier, vol. 254(C).
    2. Cui, Yang & Chen, Zhenghong & He, Yingjie & Xiong, Xiong & Li, Fen, 2023. "An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events," Energy, Elsevier, vol. 263(PC).
    3. Yu, Min & Niu, Dongxiao & Gao, Tian & Wang, Keke & Sun, Lijie & Li, Mingyu & Xu, Xiaomin, 2023. "A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism," Energy, Elsevier, vol. 269(C).
    4. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.
    5. Xiong, Jinlin & Peng, Tian & Tao, Zihan & Zhang, Chu & Song, Shihao & Nazir, Muhammad Shahzad, 2023. "A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction," Energy, Elsevier, vol. 266(C).
    6. Zhang, Yachao & Le, Jian & Liao, Xiaobing & Zheng, Feng & Li, Yinghai, 2019. "A novel combination forecasting model for wind power integrating least square support vector machine, deep belief network, singular spectrum analysis and locality-sensitive hashing," Energy, Elsevier, vol. 168(C), pages 558-572.
    7. Xiao, Yulong & Zou, Chongzhe & Chi, Hetian & Fang, Rengcun, 2023. "Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis," Energy, Elsevier, vol. 267(C).
    8. Sasser, Christiana & Yu, Meilin & Delgado, Ruben, 2022. "Improvement of wind power prediction from meteorological characterization with machine learning models," Renewable Energy, Elsevier, vol. 183(C), pages 491-501.
    9. Chengqing, Yu & Guangxi, Yan & Chengming, Yu & Yu, Zhang & Xiwei, Mi, 2023. "A multi-factor driven spatiotemporal wind power prediction model based on ensemble deep graph attention reinforcement learning networks," Energy, Elsevier, vol. 263(PE).
    10. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    11. Krishna, Attoti Bharath & Abhyankar, Abhijit R., 2023. "Time-coupled day-ahead wind power scenario generation: A combined regular vine copula and variance reduction method," Energy, Elsevier, vol. 265(C).
    12. Yu, Ruiguo & Liu, Zhiqiang & Li, Xuewei & Lu, Wenhuan & Ma, Degang & Yu, Mei & Wang, Jianrong & Li, Bin, 2019. "Scene learning: Deep convolutional networks for wind power prediction by embedding turbines into grid space," Applied Energy, Elsevier, vol. 238(C), pages 249-257.
    13. Wang, Peng & Li, Yanting & Zhang, Guangyao, 2023. "Probabilistic power curve estimation based on meteorological factors and density LSTM," Energy, Elsevier, vol. 269(C).
    14. Zhang, Chu & Ma, Huixin & Hua, Lei & Sun, Wei & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction," Energy, Elsevier, vol. 254(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Sen & Sun, Yonghui & Zhang, Wenjie & Chung, C.Y. & Srinivasan, Dipti, 2024. "Very short-term wind power forecasting considering static data: An improved transformer model," Energy, Elsevier, vol. 312(C).
    2. Yang, Mao & Huang, Yutong & Guo, Yunfeng & Zhang, Wei & Wang, Bo, 2024. "Ultra-short-term wind farm cluster power prediction based on FC-GCN and trend-aware switching mechanism," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengxiang Lv & Lin Wang & Sirui Wang, 2023. "A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 16(4), pages 1-18, February.
    2. Zheng, Xidong & Bai, Feifei & Zeng, Ziyang & Jin, Tao, 2024. "A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination," Energy, Elsevier, vol. 287(C).
    3. He, Xingyue & He, Bitao & Qin, Tao & Lin, Chuan & Yang, Jing, 2024. "Ultra-short-term wind power forecasting based on a dual-channel deep learning model with improved coot optimization algorithm," Energy, Elsevier, vol. 305(C).
    4. Hou, Guolian & Wang, Junjie & Fan, Yuzhen, 2024. "Multistep short-term wind power forecasting model based on secondary decomposition, the kernel principal component analysis, an enhanced arithmetic optimization algorithm, and error correction," Energy, Elsevier, vol. 286(C).
    5. Wang, Cong & He, Yan & Zhang, Hong-li & Ma, Ping, 2024. "Wind power forecasting based on manifold learning and a double-layer SWLSTM model," Energy, Elsevier, vol. 290(C).
    6. Wang, Shuangxin & Shi, Jiarong & Yang, Wei & Yin, Qingyan, 2024. "High and low frequency wind power prediction based on Transformer and BiGRU-Attention," Energy, Elsevier, vol. 288(C).
    7. Wang, Jianguo & Yuan, Weiru & Zhang, Shude & Cheng, Shun & Han, Lincheng, 2024. "Implementing ultra-short-term wind power forecasting without information leakage through cascade decomposition and attention mechanism," Energy, Elsevier, vol. 312(C).
    8. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    9. Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).
    10. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
    11. Zhang, Chu & Li, Zhengbo & Ge, Yida & Liu, Qianlong & Suo, Leiming & Song, Shihao & Peng, Tian, 2024. "Enhancing short-term wind speed prediction based on an outlier-robust ensemble deep random vector functional link network with AOA-optimized VMD," Energy, Elsevier, vol. 296(C).
    12. Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
    13. Meng, Anbo & Zhang, Haitao & Dai, Zhongfu & Xian, Zikang & Xiao, Liexi & Rong, Jiayu & Li, Chen & Zhu, Jianbin & Li, Hanhong & Yin, Yiding & Liu, Jiawei & Tang, Yanshu & Zhang, Bin & Yin, Hao, 2024. "An adaptive distribution-matched recurrent network for wind power prediction using time-series distribution period division," Energy, Elsevier, vol. 299(C).
    14. Yang, Mao & Guo, Yunfeng & Huang, Tao & Zhang, Wei, 2025. "Power prediction considering NWP wind speed error tolerability: A strategy to improve the accuracy of short-term wind power prediction under wind speed offset scenarios," Applied Energy, Elsevier, vol. 377(PD).
    15. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    16. Cheng, Runkun & Yang, Di & Liu, Da & Zhang, Guowei, 2024. "A reconstruction-based secondary decomposition-ensemble framework for wind power forecasting," Energy, Elsevier, vol. 308(C).
    17. Wang, Chao & Lin, Hong & Yang, Ming & Fu, Xiaoling & Yuan, Yue & Wang, Zewei, 2024. "A novel chaotic time series wind power point and interval prediction method based on data denoising strategy and improved coati optimization algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    18. Peng, Tian & Song, Shihao & Suo, Leiming & Wang, Yuhan & Nazir, Muhammad Shahzad & Zhang, Chu, 2024. "Research and application of a novel graph convolutional RVFL and evolutionary equilibrium optimizer algorithm considering spatial factors in ultra-short-term solar power prediction," Energy, Elsevier, vol. 308(C).
    19. Beibei Hu & Yunhe Cheng, 2023. "Prediction of Regional Carbon Price in China Based on Secondary Decomposition and Nonlinear Error Correction," Energies, MDPI, vol. 16(11), pages 1-22, May.
    20. Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223019047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.