IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v235y2021ics0360544221016340.html
   My bibliography  Save this article

Multidisciplinary design optimization of a wide speed range vehicle with waveride airframe and RBCC engine

Author

Listed:
  • Zhang, Tiantian
  • Yan, Xiaoting
  • Huang, Wei
  • Che, Xueke
  • Wang, Zhenguo

Abstract

The wide speed range vehicle is believed to be ideal for space round trip and its design process incorporates a number of disciplines. To achieve an overall optimal design, we adopt the multidisciplinary design optimization (MDO) approach to design the wide speed range vehicle with waverider being the airframe and the rocket-based combine cycle (RBCC) engine being the propulsion system. The design process includes the modeling of each discipline, the MDO system integration and the operation of the MDO system. Disciplines integrated in the MDO architecture includes the geometry, the aerodynamics, the propulsion, the structural mass and the trajectory. The modeling processes of these disciplines are introduced in brief in this paper and some of them are novel in the relevant area. The Bi-level system integrated optimization (BLSIO) approach is proposed as the MDO strategy, which optimize the trajectory discipline using the state variables of the other disciplines in each iteration process. With an aircraft climb mission being the optimize background, the MDO process is applied successfully and the optimal design obtained by the MDO process reduced the minimum climb time by 10.02% in comparison with the reference model. The analysis shows that the reduce of the minimum climb time is mainly realized by optimizing the configuration of the vehicle and adapting the attack angle in the climb process. The optimal configuration has larger lift-to-drag ratio but fewer fuel remaining after the mission than the reference model. This concludes that although the optimized model is not superior to the reference model in all aspects, it has an overall performance within the design space. Also, the BLSIO approach is ideal in solving the MDO problem of the wide speed range mission.

Suggested Citation

  • Zhang, Tiantian & Yan, Xiaoting & Huang, Wei & Che, Xueke & Wang, Zhenguo, 2021. "Multidisciplinary design optimization of a wide speed range vehicle with waveride airframe and RBCC engine," Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016340
    DOI: 10.1016/j.energy.2021.121386
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221016340
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Tiantian & Wang, Zhenguo & Huang, Wei & Ingham, Derek & Ma, Lin & Porkashanian, Mohamed, 2020. "An analysis tool of the rocket-based combined cycle engine and its application in the two-stage-to-orbit mission," Energy, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nie, Xianhua & Xue, Juan & Zhao, Li & Deng, Shuai & Xiong, Hanping, 2024. "New insight of thermodynamic cycle in thermoelectric power generation analyses: Literature review and perspectives," Energy, Elsevier, vol. 292(C).
    2. Chen, Jikai & Sun, Mingbo & Li, Peibo & An, Bin & Jiaoru, Wang & Li, Menglei, 2024. "Effects of excess oxidizer coefficient on RBCC engine performance in ejector mode: A theoretical investigation," Energy, Elsevier, vol. 289(C).
    3. Dang, Chaolei & Cheng, Kunlin & Fan, Junhao & Wang, Yilin & Qin, Jiang & Liu, Guodong, 2023. "Performance analysis of fuel vapor turbine and closed-Brayton-cycle combined power generation system for hypersonic vehicles," Energy, Elsevier, vol. 266(C).
    4. Zengin, İbrahim & Erdoğan, Beytullah & Benim, Ali Cemal, 2024. "CFD and Taguchi based optimization of air driven single stage partial admission axial turbine blade profiles," Energy, Elsevier, vol. 290(C).
    5. Leng, Jun-xue & Wang, Zhen-guo & Huang, Wei, 2024. "Design and investigation on the combined two-stage waverider equipped with rocket and scramjet engine," Energy, Elsevier, vol. 304(C).
    6. Cheng, Kunlin & Xu, Jing & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2022. "Performance evaluation of fuel indirect cooling based thermal management system using liquid metal for hydrocarbon-fueled scramjet," Energy, Elsevier, vol. 260(C).
    7. Luo, Qiaodan & Zhao, Shengfeng & Zhou, Shiji & Yao, Lipan & Yang, Chengwu & Lu, Xingen & Zhu, Junqiang, 2024. "Influence of diversified dihedral stator on the thermodynamic performance and flow loss characteristics of a variable core driven fan stage," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ambe Verma, Kumari & Murari Pandey, Krishna & Ray, Mukul & Kumar Sharma, Kaushal, 2021. "Effect of transverse fuel injection system on combustion efficiency in scramjet combustor," Energy, Elsevier, vol. 218(C).
    2. Liu, Yunfeng & Han, Xin & Zhang, Zijian, 2024. "Study on the propulsive performance of oblique detonation engine," Energy, Elsevier, vol. 292(C).
    3. Leng, Jun-xue & Wang, Zhen-guo & Huang, Wei, 2024. "Design and investigation on the combined two-stage waverider equipped with rocket and scramjet engine," Energy, Elsevier, vol. 304(C).
    4. Ren, Zhipeng & Li, Deyou & Li, Zhipeng & Wang, Hongjie & Liu, Jintao & Qu, Zhen & Li, Yong, 2024. "Spatial-temporal evolution mechanism of mass transfer under synergetic gaseous and vapour cavitating effects in a micropump," Energy, Elsevier, vol. 286(C).
    5. Wang, Youyin & Hou, Wenxin & Zhang, Junlong & Tang, Jingfeng & Chang, Juntao & Bao, Wen, 2021. "Research on the operating boundary of the dual mode scramjet with a constant area combustor through thermodynamic cycle analysis," Energy, Elsevier, vol. 216(C).
    6. Yan, Li & Liao, Lei & Meng, Yu-shan & Li, Shi-bin & Huang, Wei, 2020. "Investigation on the mode transition of a typical three-dimensional scramjet combustor equipped with a strut," Energy, Elsevier, vol. 208(C).
    7. Chen, Jikai & Sun, Mingbo & Li, Peibo & An, Bin & Jiaoru, Wang & Li, Menglei, 2024. "Effects of excess oxidizer coefficient on RBCC engine performance in ejector mode: A theoretical investigation," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.