IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224030512.html
   My bibliography  Save this article

Aerodynamic characteristics of wind turbines considering the inhomogeneity and periodic incentive of wake effects

Author

Listed:
  • Gao, Xiaoxia
  • Zhou, Kuncheng
  • Liu, Runze
  • Ma, Wanli
  • Gong, Xiaoyu
  • Zhu, Xiaoxun
  • Wang, Yu
  • Zhao, Fei

Abstract

In wind farms, the wake can lead to a loss of output power, and the uneven characteristics of wake can also exacerbate the fatigue load of downstream wind turbine (WT), affecting their operating life. To explore the impact of wake effects on downstream WT, this article proposes a new method for calculating the load of WT wake wind conditions and verifies it. Establishing a 3DJG wake model coupled with improved BEM for wind turbine aerodynamic performance calculation method. The influence of downstream WT operation phase angle and positions of 3D wake on the time-varying aerodynamic characteristics of downstream WTs was discussed from three perspectives: Blade elements on the spanwise, single blade and wind rotor. Results shown that: (1) For the blade element, calculated the shear force in the flapwise direction and the edgewise direction on each blade segment. The overall shear force of blade element in the vertical upward direction of WT blades is significantly greater than that in other directions. The non-uniformity of the wake is not sufficient to change the position of the maximum shear force on the blade. The position of the maximum shear force at each wake position is in the rear segments of the blade; (2) For the single blade, the most severe load fluctuation occurs when it is in the partial wake condition. The period of this fluctuation is 360°. When in full wake condition, the load fluctuation is relatively small, and due to the symmetry of the wake, the load fluctuation period is only 180°. The load standard deviation (SD) of the partial wake condition increases by 51 % compared to the full wake condition. (3) For the wind rotor, different wake positions have a weighty impact on the power loss of the WT rotor. Compared to the incoming shear wind, the power loss at the wake center can reach up to 54.22 %. At the wake boundary, the power loss of the WT is only 5.6 %. The non-uniformity of wake also has a periodic impact on the power output of the entire WT rotor, with the fluctuation period is 120°, and the fluctuation amplitude of no more than 2 %. This article provides a more intuitive quantitative analysis of the impact of wake on the time-varying aerodynamic characteristics of downstream WTs. It has certain reference value for the design strength verification of WTs, as well as the yaw strategy and layout design of wind farms.

Suggested Citation

  • Gao, Xiaoxia & Zhou, Kuncheng & Liu, Runze & Ma, Wanli & Gong, Xiaoyu & Zhu, Xiaoxun & Wang, Yu & Zhao, Fei, 2024. "Aerodynamic characteristics of wind turbines considering the inhomogeneity and periodic incentive of wake effects," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030512
    DOI: 10.1016/j.energy.2024.133275
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224030512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133275?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pacheco de Sá Sarmiento, Franciene Izis & Goes Oliveira, Jorge Luiz & Passos, Júlio César, 2022. "Impact of atmospheric stability, wake effect and topography on power production at complex-terrain wind farm," Energy, Elsevier, vol. 239(PC).
    2. Wood, D.H. & Okulov, V.L. & Bhattacharjee, D., 2016. "Direct calculation of wind turbine tip loss," Renewable Energy, Elsevier, vol. 95(C), pages 269-276.
    3. Kim, Dae-Young & Kim, Yeon-Hee & Kim, Bum-Suk, 2021. "Changes in wind turbine power characteristics and annual energy production due to atmospheric stability, turbulence intensity, and wind shear," Energy, Elsevier, vol. 214(C).
    4. Gao, Xiaoxia & Li, Bingbing & Wang, Tengyuan & Sun, Haiying & Yang, Hongxing & Li, Yonghua & Wang, Yu & Zhao, Fei, 2020. "Investigation and validation of 3D wake model for horizontal-axis wind turbines based on filed measurements," Applied Energy, Elsevier, vol. 260(C).
    5. Qian, Guo-Wei & Song, Yun-Peng & Ishihara, Takeshi, 2022. "A control-oriented large eddy simulation of wind turbine wake considering effects of Coriolis force and time-varying wind conditions," Energy, Elsevier, vol. 239(PA).
    6. Zhang, Jinhua & Yan, Jie & Infield, David & Liu, Yongqian & Lien, Fue-sang, 2019. "Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model," Applied Energy, Elsevier, vol. 241(C), pages 229-244.
    7. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2016. "Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model," Applied Energy, Elsevier, vol. 174(C), pages 192-200.
    8. Elgammi, Moutaz & Sant, Tonio & Alshaikh, Moftah, 2020. "Predicting the stochastic aerodynamic loads on blades of two yawed downwind hawts in uncontrolled conditions using a bem algorithm," Renewable Energy, Elsevier, vol. 146(C), pages 371-383.
    9. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    10. Li, Qing'an & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Hiromori, Yuto & Zhou, Shuni & Xu, Jianzhong, 2021. "Prediction of power generation of two 30 kW Horizontal Axis Wind Turbines with Gaussian model," Energy, Elsevier, vol. 231(C).
    11. Hegazy, Amr & Blondel, Frédéric & Cathelain, Marie & Aubrun, Sandrine, 2022. "LiDAR and SCADA data processing for interacting wind turbine wakes with comparison to analytical wake models," Renewable Energy, Elsevier, vol. 181(C), pages 457-471.
    12. Bangga, Galih & Lutz, Thorsten, 2021. "Aerodynamic modeling of wind turbine loads exposed to turbulent inflow and validation with experimental data," Energy, Elsevier, vol. 223(C).
    13. Zhao, Shuang & Wang, Jianwen & Han, Yuxia & Liu, Zhen, 2022. "Research on the rotor speed and aerodynamic characteristics of a dynamic yawing wind turbine with a short-time uniform wind direction variation," Energy, Elsevier, vol. 249(C).
    14. Archer, Cristina L. & Vasel-Be-Hagh, Ahmadreza & Yan, Chi & Wu, Sicheng & Pan, Yang & Brodie, Joseph F. & Maguire, A. Eoghan, 2018. "Review and evaluation of wake loss models for wind energy applications," Applied Energy, Elsevier, vol. 226(C), pages 1187-1207.
    15. Peng, Chao & Zou, Jianxiao & Li, Yan & Xu, Hongbing & Li, Liying, 2017. "A novel composite calculation model for power coefficient and flapping moment coefficient of wind turbine," Energy, Elsevier, vol. 126(C), pages 821-829.
    16. Shaler, Kelsey & Kecskemety, Krista M. & McNamara, Jack J., 2019. "Benchmarking of a Free Vortex Wake Model for Prediction of Wake Interactions," Renewable Energy, Elsevier, vol. 136(C), pages 607-620.
    17. Meng, Hang & Lien, Fue-Sang & Li, Li, 2018. "Elastic actuator line modelling for wake-induced fatigue analysis of horizontal axis wind turbine blade," Renewable Energy, Elsevier, vol. 116(PA), pages 423-437.
    18. Satymov, Rasul & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Global-local analysis of cost-optimal onshore wind turbine configurations considering wind classes and hub heights," Energy, Elsevier, vol. 256(C).
    19. Tian, Linlin & Zhu, Weijun & Shen, Wenzhong & Song, Yilei & Zhao, Ning, 2017. "Prediction of multi-wake problems using an improved Jensen wake model," Renewable Energy, Elsevier, vol. 102(PB), pages 457-469.
    20. Haojun Tang & Kit-Ming Lam & Kei-Man Shum & Yongle Li, 2019. "Wake Effect of a Horizontal Axis Wind Turbine on the Performance of a Downstream Turbine," Energies, MDPI, vol. 12(12), pages 1-18, June.
    21. Vaz, Jerson Rogério Pinheiro & Pinho, João Tavares & Mesquita, André Luiz Amarante, 2011. "An extension of BEM method applied to horizontal-axis wind turbine design," Renewable Energy, Elsevier, vol. 36(6), pages 1734-1740.
    22. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Hiromori, Yuto, 2018. "Investigation of wake characteristic of a 30 kW rated power Horizontal Axis Wind Turbine with wake model and field measurement," Applied Energy, Elsevier, vol. 225(C), pages 1190-1204.
    23. Lanzafame, R. & Messina, M., 2007. "Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory," Renewable Energy, Elsevier, vol. 32(14), pages 2291-2305.
    24. Kim, Yusik & Madsen, Helge Aa & Aparicio-Sanchez, Maria & Pirrung, Georg & Lutz, Thorsten, 2020. "Assessment of blade element momentum codes under varying turbulence levels by comparing with blade resolved computational fluid dynamics," Renewable Energy, Elsevier, vol. 160(C), pages 788-802.
    25. Qian, Guo-Wei & Ishihara, Takeshi, 2021. "Wind farm power maximization through wake steering with a new multiple wake model for prediction of turbulence intensity," Energy, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zongyuan & Gao, Xiaoxia & Zhang, Huanqiang & Lv, Tao & Han, Zhonghe & Zhu, Xiaoxun & Wang, Yu, 2023. "Analysis of the anisotropy aerodynamic characteristics of downstream wind turbine considering the 3D wake expansion based on coupling method," Energy, Elsevier, vol. 263(PD).
    2. Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
    3. Kuichao Ma & Huanqiang Zhang & Xiaoxia Gao & Xiaodong Wang & Heng Nian & Wei Fan, 2024. "Research on Evaluation Method of Wind Farm Wake Energy Efficiency Loss Based on SCADA Data Analysis," Sustainability, MDPI, vol. 16(5), pages 1-16, February.
    4. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    5. Wei Li & Shinai Xu & Baiyun Qian & Xiaoxia Gao & Xiaoxun Zhu & Zeqi Shi & Wei Liu & Qiaoliang Hu, 2022. "Large-Scale Wind Turbine’s Load Characteristics Excited by the Wind and Grid in Complex Terrain: A Review," Sustainability, MDPI, vol. 14(24), pages 1-29, December.
    6. Gao, Xiaoxia & Zhang, Shaohai & Li, Luqing & Xu, Shinai & Chen, Yao & Zhu, Xiaoxun & Sun, Haiying & Wang, Yu & Lu, Hao, 2022. "Quantification of 3D spatiotemporal inhomogeneity for wake characteristics with validations from field measurement and wind tunnel test," Energy, Elsevier, vol. 254(PA).
    7. Fei, Zhao & Tengyuan, Wang & Xiaoxia, Gao & Haiying, Sun & Hongxing, Yang & Zhonghe, Han & Yu, Wang & Xiaoxun, Zhu, 2020. "Experimental study on wake interactions and performance of the turbines with different rotor-diameters in adjacent area of large-scale wind farm," Energy, Elsevier, vol. 199(C).
    8. Ling, Ziyan & Zhao, Zhenzhou & Liu, Yige & Liu, Huiwen & Ali, Kashif & Liu, Yan & Wen, Yifan & Wang, Dingding & Li, Shijun & Su, Chunhao, 2024. "Multi-objective layout optimization for wind farms based on non-uniformly distributed turbulence and a new three-dimensional multiple wake model," Renewable Energy, Elsevier, vol. 227(C).
    9. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    10. Fei Zhao & Yihan Gao & Tengyuan Wang & Jinsha Yuan & Xiaoxia Gao, 2020. "Experimental Study on Wake Evolution of a 1.5 MW Wind Turbine in a Complex Terrain Wind Farm Based on LiDAR Measurements," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    11. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
    12. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions," Applied Energy, Elsevier, vol. 242(C), pages 1383-1395.
    13. Hércules Araújo Oliveira & José Gomes de Matos & Luiz Antonio de Souza Ribeiro & Osvaldo Ronald Saavedra & Jerson Rogério Pinheiro Vaz, 2023. "Assessment of Correction Methods Applied to BEMT for Predicting Performance of Horizontal-Axis Wind Turbines," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    14. Dongqin Zhang & Yang Liang & Chao Li & Yiqing Xiao & Gang Hu, 2022. "Applicability of Wake Models to Predictions of Turbine-Induced Velocity Deficit and Wind Farm Power Generation," Energies, MDPI, vol. 15(19), pages 1-26, October.
    15. Zhang, Shaohai & Duan, Huanfeng & Lu, Lin & He, Ruiyang & Gao, Xiaoxia & Zhu, Songye, 2024. "Quantification of three-dimensional added turbulence intensity for the horizontal-axis wind turbine considering the wake anisotropy," Energy, Elsevier, vol. 294(C).
    16. Zhu, Xiaoxun & Chen, Yao & Xu, Shinai & Zhang, Shaohai & Gao, Xiaoxia & Sun, Haiying & Wang, Yu & Zhao, Fei & Lv, Tiancheng, 2023. "Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification," Energy, Elsevier, vol. 270(C).
    17. Xiaoxia, Gao & Luqing, Li & Shaohai, Zhang & Xiaoxun, Zhu & Haiying, Sun & Hongxing, Yang & Yu, Wang & Hao, Lu, 2022. "LiDAR-based observation and derivation of large-scale wind turbine's wake expansion model downstream of a hill," Energy, Elsevier, vol. 259(C).
    18. Cheng, Yu & Zhang, Mingming & Zhang, Ziliang & Xu, Jianzhong, 2019. "A new analytical model for wind turbine wakes based on Monin-Obukhov similarity theory," Applied Energy, Elsevier, vol. 239(C), pages 96-106.
    19. He, Ruiyang & Yang, Hongxing & Sun, Haiying & Gao, Xiaoxia, 2021. "A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind turbine wakes," Applied Energy, Elsevier, vol. 296(C).
    20. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.