IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipcs0360544221024592.html
   My bibliography  Save this article

Impact of atmospheric stability, wake effect and topography on power production at complex-terrain wind farm

Author

Listed:
  • Pacheco de Sá Sarmiento, Franciene Izis
  • Goes Oliveira, Jorge Luiz
  • Passos, Júlio César

Abstract

In this study, the combined impact of atmospheric stability, speed-up and wake effect on the production of pairs of wind turbines in a wind farm located on complex terrain was evaluated considering the full wake effect wind direction. Prior analysis of the climate and atmospheric stability at the wind farm and the power production was carried out. It was found that the downwind turbine performs better than the upwind turbine at dawn and the atmospheric stability does not affect the ratio of power production of the wind turbine pairs. When the wind farm data were compared with the speed-up and wake effects models, it was observed that the effects are reversed, that is, when the speed-up model had small errors the wake effects model errors were large. This behavior was observed in the early hours of the morning while in the daytime the wake effects model had small errors and the speed-up model errors were large, indicating that the two phenomena are dominant at different times of the day.

Suggested Citation

  • Pacheco de Sá Sarmiento, Franciene Izis & Goes Oliveira, Jorge Luiz & Passos, Júlio César, 2022. "Impact of atmospheric stability, wake effect and topography on power production at complex-terrain wind farm," Energy, Elsevier, vol. 239(PC).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024592
    DOI: 10.1016/j.energy.2021.122211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221024592
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fei, Zhao & Tengyuan, Wang & Xiaoxia, Gao & Haiying, Sun & Hongxing, Yang & Zhonghe, Han & Yu, Wang & Xiaoxun, Zhu, 2020. "Experimental study on wake interactions and performance of the turbines with different rotor-diameters in adjacent area of large-scale wind farm," Energy, Elsevier, vol. 199(C).
    2. Seim, Fredrik & Gravdahl, Arne R. & Adaramola, Muyiwa S., 2017. "Validation of kinematic wind turbine wake models in complex terrain using actual windfarm production data," Energy, Elsevier, vol. 123(C), pages 742-753.
    3. Yang, Xiaolei & Pakula, Maggie & Sotiropoulos, Fotis, 2018. "Large-eddy simulation of a utility-scale wind farm in complex terrain," Applied Energy, Elsevier, vol. 229(C), pages 767-777.
    4. Han, Xingxing & Liu, Deyou & Xu, Chang & Shen, Wen Zhong, 2018. "Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain," Renewable Energy, Elsevier, vol. 126(C), pages 640-651.
    5. Brogna, Roberto & Feng, Ju & Sørensen, Jens Nørkær & Shen, Wen Zhong & Porté-Agel, Fernando, 2020. "A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain," Applied Energy, Elsevier, vol. 259(C).
    6. Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2019. "Validations of three-dimensional wake models with the wind field measurements in complex terrain," Energy, Elsevier, vol. 189(C).
    7. Gao, Xiaoxia & Wang, Tengyuan & Li, Bingbing & Sun, Haiying & Yang, Hongxing & Han, Zhonghe & Wang, Yu & Zhao, Fei, 2019. "Investigation of wind turbine performance coupling wake and topography effects based on LiDAR measurements and SCADA data," Applied Energy, Elsevier, vol. 255(C).
    8. Archer, Cristina L. & Vasel-Be-Hagh, Ahmadreza & Yan, Chi & Wu, Sicheng & Pan, Yang & Brodie, Joseph F. & Maguire, A. Eoghan, 2018. "Review and evaluation of wake loss models for wind energy applications," Applied Energy, Elsevier, vol. 226(C), pages 1187-1207.
    9. Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
    10. Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2020. "Experimental study on wind speeds in a complex-terrain wind farm and analysis of wake effects," Applied Energy, Elsevier, vol. 272(C).
    11. Subramanian, B. & Chokani, N. & Abhari, R.S., 2016. "Aerodynamics of wind turbine wakes in flat and complex terrains," Renewable Energy, Elsevier, vol. 85(C), pages 454-463.
    12. Radünz, William Corrêa & Sakagami, Yoshiaki & Haas, Reinaldo & Petry, Adriane Prisco & Passos, Júlio César & Miqueletti, Mayara & Dias, Eduardo, 2021. "Influence of atmospheric stability on wind farm performance in complex terrain," Applied Energy, Elsevier, vol. 282(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ziyu & Huang, Peng & Bitsuamlak, Girma & Cao, Shuyang, 2024. "Large-eddy simulation of upwind-hill effects on wind-turbine wakes and power performance," Energy, Elsevier, vol. 294(C).
    2. Wang, Qiang & Luo, Kun & Wu, Chunlei & Zhu, Zhaofan & Fan, Jianren, 2022. "Mesoscale simulations of a real onshore wind power base in complex terrain: Wind farm wake behavior and power production," Energy, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Xiaoxia & Chen, Yao & Xu, Shinai & Gao, Wei & Zhu, Xiaoxun & Sun, Haiying & Yang, Hongxing & Han, Zhonghe & Wang, Yu & Lu, Hao, 2022. "Comparative experimental investigation into wake characteristics of turbines in three wind farms areas with varying terrain complexity from LiDAR measurements," Applied Energy, Elsevier, vol. 307(C).
    2. Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
    3. He, Ruiyang & Yang, Hongxing & Sun, Haiying & Gao, Xiaoxia, 2021. "A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind turbine wakes," Applied Energy, Elsevier, vol. 296(C).
    4. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    5. Fei Zhao & Yihan Gao & Tengyuan Wang & Jinsha Yuan & Xiaoxia Gao, 2020. "Experimental Study on Wake Evolution of a 1.5 MW Wind Turbine in a Complex Terrain Wind Farm Based on LiDAR Measurements," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    6. Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2020. "A review of full-scale wind-field measurements of the wind-turbine wake effect and a measurement of the wake-interaction effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Sun, Haiying & Qiu, Changyu & Lu, Lin & Gao, Xiaoxia & Chen, Jian & Yang, Hongxing, 2020. "Wind turbine power modelling and optimization using artificial neural network with wind field experimental data," Applied Energy, Elsevier, vol. 280(C).
    8. Brogna, Roberto & Feng, Ju & Sørensen, Jens Nørkær & Shen, Wen Zhong & Porté-Agel, Fernando, 2020. "A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain," Applied Energy, Elsevier, vol. 259(C).
    9. Zhang, Shaohai & Duan, Huanfeng & Lu, Lin & He, Ruiyang & Gao, Xiaoxia & Zhu, Songye, 2024. "Quantification of three-dimensional added turbulence intensity for the horizontal-axis wind turbine considering the wake anisotropy," Energy, Elsevier, vol. 294(C).
    10. Gu, Bo & Meng, Hang & Ge, Mingwei & Zhang, Hongtao & Liu, Xinyu, 2021. "Cooperative multiagent optimization method for wind farm power delivery maximization," Energy, Elsevier, vol. 233(C).
    11. Zhu, Xiaoxun & Chen, Yao & Xu, Shinai & Zhang, Shaohai & Gao, Xiaoxia & Sun, Haiying & Wang, Yu & Zhao, Fei & Lv, Tiancheng, 2023. "Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification," Energy, Elsevier, vol. 270(C).
    12. Zahid Mehmood & Zhenyu Wang & Xin Zhang & Guiying Shen, 2024. "Aerodynamic Performance and Numerical Validation Study of a Scaled-Down and Full-Scale Wind Turbine Models," Energies, MDPI, vol. 17(21), pages 1-22, October.
    13. Wang, Qiang & Luo, Kun & Wu, Chunlei & Zhu, Zhaofan & Fan, Jianren, 2022. "Mesoscale simulations of a real onshore wind power base in complex terrain: Wind farm wake behavior and power production," Energy, Elsevier, vol. 241(C).
    14. Sun, Haiying & Yang, Hongxing & Gao, Xiaoxia, 2023. "Investigation into wind turbine wake effect on complex terrain," Energy, Elsevier, vol. 269(C).
    15. Xiaoxia, Gao & Luqing, Li & Shaohai, Zhang & Xiaoxun, Zhu & Haiying, Sun & Hongxing, Yang & Yu, Wang & Hao, Lu, 2022. "LiDAR-based observation and derivation of large-scale wind turbine's wake expansion model downstream of a hill," Energy, Elsevier, vol. 259(C).
    16. Wu, Yan & Xia, Tianqi & Wang, Yufei & Zhang, Haoran & Feng, Xiao & Song, Xuan & Shibasaki, Ryosuke, 2022. "A synchronization methodology for 3D offshore wind farm layout optimization with multi-type wind turbines and obstacle-avoiding cable network," Renewable Energy, Elsevier, vol. 185(C), pages 302-320.
    17. Sun, Jili & Chen, Zheng & Yu, Hao & Gao, Shan & Wang, Bin & Ying, You & Sun, Yong & Qian, Peng & Zhang, Dahai & Si, Yulin, 2022. "Quantitative evaluation of yaw-misalignment and aerodynamic wake induced fatigue loads of offshore Wind turbines," Renewable Energy, Elsevier, vol. 199(C), pages 71-86.
    18. Yang, Shanghui & Deng, Xiaowei & Yang, Kun, 2024. "Machine-learning-based wind farm optimization through layout design and yaw control," Renewable Energy, Elsevier, vol. 224(C).
    19. Gao, Xiaoxia & Li, Bingbing & Wang, Tengyuan & Sun, Haiying & Yang, Hongxing & Li, Yonghua & Wang, Yu & Zhao, Fei, 2020. "Investigation and validation of 3D wake model for horizontal-axis wind turbines based on filed measurements," Applied Energy, Elsevier, vol. 260(C).
    20. Sun, Haiying & Yang, Hongxing, 2023. "Wind farm layout and hub height optimization with a novel wake model," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.