IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v249y2022ics0360544222004832.html
   My bibliography  Save this article

Research on the rotor speed and aerodynamic characteristics of a dynamic yawing wind turbine with a short-time uniform wind direction variation

Author

Listed:
  • Zhao, Shuang
  • Wang, Jianwen
  • Han, Yuxia
  • Liu, Zhen

Abstract

Dynamic yawing caused by wind direction variation is an important operating case for wind turbines. Because experimental data are lacking, existing studies assume that the rotor speed and pitch angle are constant, which cannot reflect the actual working states of wind turbines in the short-time variation of the wind direction. In this study, the rotor speed and power characteristics of wind turbine with the condition of variable wind direction were obtained through experiments. Using the experimental time-varying rotor speed curve, the aerodynamic characteristics were further studied using computational fluid dynamics method. The results showed that the rotor speed decreased due to the short-term wind direction variation. The final rotor speed and the stable time were related to the initial tip speed ratio and the wind direction variation rate, respectively. The dynamic yawing with the assumption of invariable rotor speed overestimated the average torque and underestimated the variation of torque. The continuous decreasing rotor speed made the angle of attack and its fluctuation degree larger. This caused a wide range of the flow separation for the whole blade and large fluctuation of the axial/tangential force load, and it doubled the fluctuation frequency of the aerodynamic load in the blade root region.

Suggested Citation

  • Zhao, Shuang & Wang, Jianwen & Han, Yuxia & Liu, Zhen, 2022. "Research on the rotor speed and aerodynamic characteristics of a dynamic yawing wind turbine with a short-time uniform wind direction variation," Energy, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222004832
    DOI: 10.1016/j.energy.2022.123580
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222004832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions," Applied Energy, Elsevier, vol. 242(C), pages 1383-1395.
    2. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions," Energy, Elsevier, vol. 168(C), pages 1138-1156.
    3. Ebrahimi, Abbas & Sekandari, Mahmood, 2018. "Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes," Energy, Elsevier, vol. 145(C), pages 261-275.
    4. Abdelgalil Eltayesh & Magdy Bassily Hanna & Francesco Castellani & A.S. Huzayyin & Hesham M. El-Batsh & Massimiliano Burlando & Matteo Becchetti, 2019. "Effect of Wind Tunnel Blockage on the Performance of a Horizontal Axis Wind Turbine with Different Blade Number," Energies, MDPI, vol. 12(10), pages 1-15, May.
    5. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Yusuke, Nishida, 2016. "Effect of turbulence on power performance of a Horizontal Axis Wind Turbine in yawed and no-yawed flow conditions," Energy, Elsevier, vol. 109(C), pages 703-711.
    6. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    7. Regodeseves, P. García & Morros, C. Santolaria, 2020. "Unsteady numerical investigation of the full geometry of a horizontal axis wind turbine: Flow through the rotor and wake," Energy, Elsevier, vol. 202(C).
    8. Qiu, Yong-Xing & Wang, Xiao-Dong & Kang, Shun & Zhao, Ming & Liang, Jun-Yu, 2014. "Predictions of unsteady HAWT aerodynamics in yawing and pitching using the free vortex method," Renewable Energy, Elsevier, vol. 70(C), pages 93-106.
    9. Wang, Guofu & Zhang, Lei & Shen, Wen Zhong, 2018. "LES simulation and experimental validation of the unsteady aerodynamics of blunt wind turbine airfoils," Energy, Elsevier, vol. 158(C), pages 911-923.
    10. Mou Lin & Fernando Porté-Agel, 2019. "Large-Eddy Simulation of Yawed Wind-Turbine Wakes: Comparisons with Wind Tunnel Measurements and Analytical Wake Models," Energies, MDPI, vol. 12(23), pages 1-18, November.
    11. Zhang, Ye & Deng, Shuanghou & Wang, Xiaofang, 2019. "RANS and DDES simulations of a horizontal-axis wind turbine under stalled flow condition using OpenFOAM," Energy, Elsevier, vol. 167(C), pages 1155-1163.
    12. Yang, Jian & Wang, Li & Song, Dongran & Huang, Chaoneng & Huang, Liansheng & Wang, Junlei, 2022. "Incorporating environmental impacts into zero-point shifting diagnosis of wind turbines yaw angle," Energy, Elsevier, vol. 238(PA).
    13. Xiaodong Wang & Zhaoliang Ye & Shun Kang & Hui Hu, 2019. "Investigations on the Unsteady Aerodynamic Characteristics of a Horizontal-Axis Wind Turbine during Dynamic Yaw Processes," Energies, MDPI, vol. 12(16), pages 1-23, August.
    14. Guo, Peng & Chen, Si & Chu, Jingchun & Infield, David, 2020. "Wind direction fluctuation analysis for wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1026-1035.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Shuanglong & Liu, Zhenqing, 2023. "Proposal of fully-coupled actuated disk model for wind turbine operation modeling in turbulent flow field due to complex topography," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yize & Wang, Xiaodong & Mei, Yuanhang & Ye, Zhaoliang & Guo, Xiaojiang, 2022. "Effect of coupled platform pitch-surge motions on the aerodynamic characters of a horizontal floating offshore wind turbine," Renewable Energy, Elsevier, vol. 196(C), pages 278-297.
    2. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Chen, Ziwen & Wang, Xiaodong & Guo, Yize & Kang, Shun, 2021. "Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions," Renewable Energy, Elsevier, vol. 163(C), pages 1849-1870.
    4. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    5. Shantanu Purohit & Ijaz Fazil Syed Ahmed Kabir & E. Y. K. Ng, 2021. "On the Accuracy of uRANS and LES-Based CFD Modeling Approaches for Rotor and Wake Aerodynamics of the (New) MEXICO Wind Turbine Rotor Phase-III," Energies, MDPI, vol. 14(16), pages 1-26, August.
    6. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
    8. Zhanpu Xue & Hao Zhang & Yunguang Ji, 2023. "Dynamic Response of a Flexible Multi-Body in Large Wind Turbines: A Review," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    9. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.
    10. Wang, Xinbao & Cai, Chang & Wu, Xianyou & Chen, Yewen & Wang, Tengyuan & Zhong, Xiaohui & Li, Qing'an, 2024. "Numerical validation of the dynamic aerodynamic similarity criterion for floating offshore wind turbines under equivalent pitch motions," Energy, Elsevier, vol. 294(C).
    11. Li, Qing’an & Xu, Jianzhong & Kamada, Yasunari & Takao, Maeda & Nishimura, Shogo & Wu, Guangxing & Cai, Chang, 2020. "Experimental investigations of airfoil surface flow of a horizontal axis wind turbine with LDV measurements," Energy, Elsevier, vol. 191(C).
    12. de Oliveira, Marielle & Puraca, Rodolfo C. & Carmo, Bruno S., 2023. "A study on the influence of the numerical scheme on the accuracy of blade-resolved simulations employed to evaluate the performance of the NREL 5 MW wind turbine rotor in full scale," Energy, Elsevier, vol. 283(C).
    13. Regodeseves, P. García & Morros, C. Santolaria, 2024. "Development and assessment of an actuator volume method in rotating frame for predicting the flow-field of horizontal-axis wind turbines," Energy, Elsevier, vol. 293(C).
    14. Cui, Wenyao & Xiao, Zhixiang & Yuan, Xiangjiang, 2020. "Simulations of transition and separation past a wind-turbine airfoil near stall," Energy, Elsevier, vol. 205(C).
    15. Bingzheng Dou & Zhanpei Yang & Michele Guala & Timing Qu & Liping Lei & Pan Zeng, 2020. "Comparison of Different Driving Modes for the Wind Turbine Wake in Wind Tunnels," Energies, MDPI, vol. 13(8), pages 1-17, April.
    16. He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    17. Xiaodong Wang & Zhaoliang Ye & Shun Kang & Hui Hu, 2019. "Investigations on the Unsteady Aerodynamic Characteristics of a Horizontal-Axis Wind Turbine during Dynamic Yaw Processes," Energies, MDPI, vol. 12(16), pages 1-23, August.
    18. Xue, Zhanpu & Wang, Wei & Fang, Liqing & Zhou, Jingbo, 2020. "Numerical simulation on structural dynamics of 5 MW wind turbine," Renewable Energy, Elsevier, vol. 162(C), pages 222-233.
    19. de Oliveira, M. & Puraca, R.C. & Carmo, B.S., 2022. "Blade-resolved numerical simulations of the NREL offshore 5 MW baseline wind turbine in full scale: A study of proper solver configuration and discretization strategies," Energy, Elsevier, vol. 254(PB).
    20. Monjardín-Gámez, José de Jesús & Campos-Amezcua, Rafael & Gómez-Martínez, Roberto & Sánchez-García, Raúl & Campos-Amezcua, Alfonso & Trujillo-Franco, Luis G. & Abundis-Fong, Hugo F., 2023. "Large eddy simulation and experimental study of the turbulence on wind turbines," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222004832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.