Author
Listed:
- Alsagri, Ali Sulaiman
- Alrobaian, Abdulrahman A.
Abstract
Increasing energy demand in buildings in the last decade has led to more efficient usage of renewable energy. Building integrated photovoltaic/thermal systems is one of the effective ways of reducing energy consumption in buildings by providing heating, cooling, ventilation, hot water, and air. The enhancement of photovoltaic cell temperature reduces the electrical efficiency of photovoltaic panel systems. In this regard, the effects of cooling with air and phase change material layer are investigated in this study. The simulation of BIPV/T, PV, and heat pump was done in TRNSYS. As the main novelty of recent simulation, for the calculations of phase change material layer, MATLAB coupled with the TRNSYS, and Python software was used for the prediction process under the weather conditions of Sharurah, Saudi Arabia for 2022. Also, the performance of a building integrated photovoltaic/thermal system with a phase change material layer is predicted for 2024 and 2025 by the Random Forest machine learning method. The R squared, Root Mean Squared Error, and Mean Absolute Error are utilized for checking the accuracy of the model. Also, for more certainty, a validation was done on the simulated results of TRNSYS and the results showed high conformity of data. The simulated data for the first six months of 2022 showed that the maximum cooling effect happened in June with 25.47 °C and a 37.87 % reduction in photovoltaic cell temperature. Also, the best electrical efficiency improvement was 1.26 % while the thermal efficiency ranged from 29.65 % to 59.40 %, respectively. The predicted data was confirmed by R2, RMSE, and MAE equal to 96.64 %, 0.06 and 0.04. According to the simulation and predictions done, the annual electrical production of the building is achieved. The results indicate that, for the simulated system, about 29.7 %, 29.8 %, and 29.6 % of total energy utilization could be supplied by BIPV/T cooled with phase change material in 2022, 2024, and 2025, respectively.
Suggested Citation
Alsagri, Ali Sulaiman & Alrobaian, Abdulrahman A., 2024.
"Analysis and performance prediction of a building integrated photovoltaic thermal system with and without phase change material,"
Energy, Elsevier, vol. 310(C).
Handle:
RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030251
DOI: 10.1016/j.energy.2024.133249
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030251. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.