IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224029414.html
   My bibliography  Save this article

Uncertainty quantification of the inlet boundary conditions in a supercritical CO2 centrifugal compressor based on the non-intrusive polynomial chaos

Author

Listed:
  • Yue, Wenhao
  • Yang, Chen
  • Shi, Chenyue
  • Yang, Jinguang
  • Liao, Naibing

Abstract

Given the sensitivity of supercritical carbon dioxide centrifugal compressors performance to inlet boundary parameter fluctuations, this study focuses on the uncertainty quantification of the inlet boundary conditions. Non-intrusive polynomial chaos surrogate models were developed for both performance parameters and flow field of a supercritical carbon dioxide centrifugal compressor. Sensitivity and correlation analyses revealed that inlet total temperature is the primary influencing parameter. Fluctuations of 1.37 % in total temperature and 6.75 % in total pressure result in changes of 40.94 %, 18.57 %, and 1.77 % in mass flow rate, total pressure ratio, and total to total isentropic efficiency, respectively. Flow field statistical analysis shows that inlet uncertainties nonlinearly impact the dryness fraction and relative Mach number distributions near the blade leading edge, while the density in the condensation zone on the suction side of the leading edge is less affected. Error bands in static pressure on blade surfaces highlight significant variations, particularly at 90 % spanwise on the blade suction side, where shocks and supersonic flow induce prominent disturbances. This study offers a preliminary methodology and theoretical guidance for robust aerodynamic optimization and operational strategies of supercritical carbon dioxide centrifugal compressors.

Suggested Citation

  • Yue, Wenhao & Yang, Chen & Shi, Chenyue & Yang, Jinguang & Liao, Naibing, 2024. "Uncertainty quantification of the inlet boundary conditions in a supercritical CO2 centrifugal compressor based on the non-intrusive polynomial chaos," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029414
    DOI: 10.1016/j.energy.2024.133166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224029414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.