IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224027919.html
   My bibliography  Save this article

Medium and long-term energy demand forecasts by sectors in China under the goal of “carbon peaking & carbon neutrality”: Based on the LEAP-China model

Author

Listed:
  • Li, Shanshan
  • Kong, Weiling
  • Wang, Yujie
  • Yuan, Liang

Abstract

Energy is a critical material foundation for sustainable economic and social development and national security, and it is of great significance to explore China's medium and long-term energy demand to realize the “dual-carbon” goal. Based on the current state of economic and social development and energy consumption, the LEAP-CHINA model is constructed to create baseline scenario, structural adjustment scenario, technology abatement scenario, and comprehensive scenario to forecast China's total energy demand, end-use industry subsectors, end-use energy subvarieties, processing and conversion sectors from 2022 to 2060. The results show: (1) China's total energy demand showed a “rapid increase before 2039, a slow increase between 2039 and 2049, and a gentle decrease after peaking in 2049". (2) The contribution rate of energy conservation and emission reduction was comprehensive scenario > technology abatement scenario > industrial adjustment scenario > baseline scenario > energy adjustment scenario. (3) Industry was the largest energy demand industry, and the rest of the industries' energy demand share was decreasing. (4) There is a definite trend towards power system decarbonization and energy system electrification, with non-fossil energy power generation anticipated to increase to 78%–82 % in 2060. Finally, it proposes countermeasures for China's energy development in the medium and long-term.

Suggested Citation

  • Li, Shanshan & Kong, Weiling & Wang, Yujie & Yuan, Liang, 2024. "Medium and long-term energy demand forecasts by sectors in China under the goal of “carbon peaking & carbon neutrality”: Based on the LEAP-China model," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224027919
    DOI: 10.1016/j.energy.2024.133017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224027919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pata, Ugur Korkut & Caglar, Abdullah Emre, 2021. "Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: Evidence from augmented ARDL approach with a structural break," Energy, Elsevier, vol. 216(C).
    2. J. A. León & M. Ordaz & E. Haddad & I. F. Araújo, 2022. "Risk caused by the propagation of earthquake losses through the economy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Bijay B. Pradhan & Ram M. Shrestha & Bundit Limmeechokchai, 2020. "Achieving the Paris Agreement’s 2 degree target in Nepal: the potential role of a carbon tax," Climate Policy, Taylor & Francis Journals, vol. 20(3), pages 387-404, March.
    4. Laibao Liu & Gang He & Mengxi Wu & Gang Liu & Haoran Zhang & Ying Chen & Jiashu Shen & Shuangcheng Li, 2023. "Climate change impacts on planned supply–demand match in global wind and solar energy systems," Nature Energy, Nature, vol. 8(8), pages 870-880, August.
    5. Wu, Wei & Zhang, Tingting & Xie, Xiaomin & Huang, Zhen, 2021. "Regional low carbon development pathways for the Yangtze River Delta region in China," Energy Policy, Elsevier, vol. 151(C).
    6. Kouchachvili, Lia & Entchev, Evgueniy, 2018. "Power to gas and H2/NG blend in SMART energy networks concept," Renewable Energy, Elsevier, vol. 125(C), pages 456-464.
    7. Brugger, Heike & Eichhammer, Wolfgang & Mikova, Nadezhda & Dönitz, Ewa, 2021. "Energy Efficiency Vision 2050: How will new societal trends influence future energy demand in the European countries?," Energy Policy, Elsevier, vol. 152(C).
    8. Emami Javanmard, M. & Tang, Y. & Wang, Z. & Tontiwachwuthikul, P., 2023. "Forecast energy demand, CO2 emissions and energy resource impacts for the transportation sector," Applied Energy, Elsevier, vol. 338(C).
    9. Abbasi, Kashif Raza & Shahbaz, Muhammad & Zhang, Jinjun & Irfan, Muhammad & Alvarado, Rafael, 2022. "Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy," Renewable Energy, Elsevier, vol. 187(C), pages 390-402.
    10. Lee, Chien-Chiang & Zhao, Ya-Nan, 2023. "Heterogeneity analysis of factors influencing CO2 emissions: The role of human capital, urbanization, and FDI," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    11. Simsek, Yeliz & Sahin, Hasret & Lorca, Álvaro & Santika, Wayan G. & Urmee, Tania & Escobar, Rodrigo, 2020. "Comparison of energy scenario alternatives for Chile: Towards low-carbon energy transition by 2030," Energy, Elsevier, vol. 206(C).
    12. Pata, Ugur Korkut, 2021. "Linking renewable energy, globalization, agriculture, CO2 emissions and ecological footprint in BRIC countries: A sustainability perspective," Renewable Energy, Elsevier, vol. 173(C), pages 197-208.
    13. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    14. Agrawal, Nikhil & Ahiduzzaman, Md & Kumar, Amit, 2018. "The development of an integrated model for the assessment of water and GHG footprints for the power generation sector," Applied Energy, Elsevier, vol. 216(C), pages 558-575.
    15. Liu, Haiying & Pata, Ugur Korkut & Zafar, Muhammad Wasif & Kartal, Mustafa Tevfik & Karlilar, Selin & Caglar, Abdullah Emre, 2023. "Do oil and natural gas prices affect carbon efficiency? Daily evidence from China by wavelet transform-based approaches," Resources Policy, Elsevier, vol. 85(PB).
    16. Chen, Wenying & Wu, Zongxin & He, Jiankun & Gao, Pengfei & Xu, Shaofeng, 2007. "Carbon emission control strategies for China: A comparative study with partial and general equilibrium versions of the China MARKAL model," Energy, Elsevier, vol. 32(1), pages 59-72.
    17. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    18. El-Sayed, Ahmed Hassan A. & Khalil, Adel & Yehia, Mohamed, 2023. "Modeling alternative scenarios for Egypt 2050 energy mix based on LEAP analysis," Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Bin, 2023. "Exploring the sustainable growth pathway of wind power in China: Using the semiparametric regression model," Energy Policy, Elsevier, vol. 183(C).
    2. Pata, Ugur Korkut & Ertugrul, Hasan Murat, 2023. "Do the Kyoto Protocol, geopolitical risks, human capital and natural resources affect the sustainability limit? A new environmental approach based on the LCC hypothesis," Resources Policy, Elsevier, vol. 81(C).
    3. Tang, Yi, 2024. "Nexus of natural resource depletion, corruption and financial inclusion on bio-diversity loss: A systematic study on corrupt economies," Resources Policy, Elsevier, vol. 92(C).
    4. Jahanger, Atif & Hossain, Mohammad Razib & Awan, Ashar, 2024. "Exploring the critical nexus among energy mineral, globalization, and CO2 emissions in NAFTA: What's the forum's response amid asymmetries?," Resources Policy, Elsevier, vol. 90(C).
    5. Ren, Jinhui & Zhang, Qianzhi & Chen, Wenying, 2024. "China's provincial power decarbonization transition in a carbon neutral vision," Energy, Elsevier, vol. 310(C).
    6. Yang, Bin & Wu, Qiong & Sharif, Arshian & Uddin, Gazi Salah, 2023. "Non-linear impact of natural resources, green financing, and energy transition on sustainable environment: A way out for common prosperity in NORDIC countries," Resources Policy, Elsevier, vol. 83(C).
    7. Li, Jinlong & Shi, Yang & Song, Xiaowei, 2024. "The dynamics of digitalization and natural resources in shaping the sustainable development agenda in BRICS-T nations," Resources Policy, Elsevier, vol. 91(C).
    8. Zhang, Mingming & Song, Wenwen & Liu, Liyun & Zhou, Dequn, 2024. "Optimal investment portfolio strategy for carbon neutrality of power enterprises," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Sun, Yunpeng & Guan, Weimin & Mehmood, Usman & Yang, Xiaodong, 2022. "Asymmetric impacts of natural resources on ecological footprints: Exploring the role of economic growth, FDI and renewable energy in G-11 countries," Resources Policy, Elsevier, vol. 79(C).
    10. Dongsheng Zheng & Dan Tong & Steven J. Davis & Yue Qin & Yang Liu & Ruochong Xu & Jin Yang & Xizhe Yan & Guannan Geng & Huizheng Che & Qiang Zhang, 2024. "Climate change impacts on the extreme power shortage events of wind-solar supply systems worldwide during 1980–2022," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Mustafa Saglam & Catalina Spataru & Omer Ali Karaman, 2023. "Forecasting Electricity Demand in Turkey Using Optimization and Machine Learning Algorithms," Energies, MDPI, vol. 16(11), pages 1-23, June.
    12. Wang, Chen & Raza, Syed Ali & Adebayo, Tomiwa Sunday & Yi, Sun & Shah, Muhammad Ibrahim, 2023. "The roles of hydro, nuclear and biomass energy towards carbon neutrality target in China: A policy-based analysis," Energy, Elsevier, vol. 262(PA).
    13. Ali, Mumtaz & Tursoy, Turgut & Samour, Ahmed & Moyo, Delani & Konneh, Abrahim, 2022. "Testing the impact of the gold price, oil price, and renewable energy on carbon emissions in South Africa: Novel evidence from bootstrap ARDL and NARDL approaches," Resources Policy, Elsevier, vol. 79(C).
    14. Razmjoo, Armin & Mirjalili, Seyedali & Aliehyaei, Mehdi & Østergaard, Poul Alberg & Ahmadi, Abolfazl & Majidi Nezhad, Meysam, 2022. "Development of smart energy systems for communities: technologies, policies and applications," Energy, Elsevier, vol. 248(C).
    15. Armin Razmjoo & Mostafa Rezaei & Seyedali Mirjalili & Meysam Majidi Nezhad & Giuseppe Piras, 2021. "Development of Sustainable Energy Use with Attention to Fruitful Policy," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    16. Ramzan, Muhammad & Abbasi, Kashif Raza & Salman, Asma & Dagar, Vishal & Alvarado, Rafael & Kagzi, Muneza, 2023. "Towards the dream of go green: An empirical importance of green innovation and financial depth for environmental neutrality in world's top 10 greenest economies," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    17. Eskandari, Hamidreza & Saadatmand, Hassan & Ramzan, Muhammad & Mousapour, Mobina, 2024. "Innovative framework for accurate and transparent forecasting of energy consumption: A fusion of feature selection and interpretable machine learning," Applied Energy, Elsevier, vol. 366(C).
    18. Zhang, Xudong & Song, Xueqian & Lu, Jianguang & Liu, Fei, 2022. "How financial development and digital trade affect ecological sustainability: The role of renewable energy using an advanced panel in G-7 Countries," Renewable Energy, Elsevier, vol. 199(C), pages 1005-1015.
    19. Caglar, Abdullah Emre & Askin, Bekir Emre, 2023. "A path towards green revolution: How do competitive industrial performance and renewable energy consumption influence environmental quality indicators?," Renewable Energy, Elsevier, vol. 205(C), pages 273-280.
    20. Pata, Ugur Korkut & Kartal, Mustafa Tevfik & Mukhtarov, Shahriyar, 2024. "Technological changes and carbon neutrality targets in European countries: A sustainability approach with Fourier approximations," Technological Forecasting and Social Change, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224027919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.