IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i1p59-72.html
   My bibliography  Save this article

Carbon emission control strategies for China: A comparative study with partial and general equilibrium versions of the China MARKAL model

Author

Listed:
  • Chen, Wenying
  • Wu, Zongxin
  • He, Jiankun
  • Gao, Pengfei
  • Xu, Shaofeng

Abstract

China's carbon dioxide emissions from fossil fuel combustion had increased with an annual growth rate of 4.36% since 1980, hitting 1GtC in 2003. The global climate change issue is becoming more and more important and hence to be the fourth challenge for China's future energy development, following energy supply shortages, energy security, and local environmental protection. This paper used three MARKAL (MARKet ALlocation) family models, that is, MARKAL, MARKAL-ED (MARKAL with elastic demand), and MARKAL-MACRO, to study China energy system's carbon mitigation strategies and corresponding impacts on the economy. The models’ structures and the economic feedback formulations used in MARKAL-MACRO and MARKAL-ED are briefly described. The endogenous demands in MARKAL-MACRO and MARKAL-ED enable them to partly satisfy carbon abatement constraints via energy service demand reductions, and the reduction levels for the 30 demand sectors from these two kinds of models for given carbon emission constraints are presented and compared. The impact of carbon mitigation on social welfare from MARKAL and MARKAL-ED, and on GDP, investment and consumption from MARKAL-MACRO are evaluated. The changes in both final and primary energy mix, changes in technology development, as well as marginal abatement costs for given carbon constraints from the three models, are analyzed.

Suggested Citation

  • Chen, Wenying & Wu, Zongxin & He, Jiankun & Gao, Pengfei & Xu, Shaofeng, 2007. "Carbon emission control strategies for China: A comparative study with partial and general equilibrium versions of the China MARKAL model," Energy, Elsevier, vol. 32(1), pages 59-72.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:1:p:59-72
    DOI: 10.1016/j.energy.2006.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054420600034X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larson, Eric D. & Zongxin, Wu & DeLaquil, Pat & Wenying, Chen & Pengfei, Gao, 2003. "Future implications of China's energy-technology choices," Energy Policy, Elsevier, vol. 31(12), pages 1189-1204, September.
    2. Chen, Wenying, 2005. "The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling," Energy Policy, Elsevier, vol. 33(7), pages 885-896, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ko, Fu-Kuang & Huang, Chang-Bin & Tseng, Pei-Ying & Lin, Chung-Han & Zheng, Bo-Yan & Chiu, Hsiu-Mei, 2010. "Long-term CO2 emissions reduction target and scenarios of power sector in Taiwan," Energy Policy, Elsevier, vol. 38(1), pages 288-300, January.
    2. Chai, Qimin & Zhang, Xiliang, 2010. "Technologies and policies for the transition to a sustainable energy system in china," Energy, Elsevier, vol. 35(10), pages 3995-4002.
    3. Rout, Ullash K. & Voβ, Alfred & Singh, Anoop & Fahl, Ulrich & Blesl, Markus & Ó Gallachóir, Brian P., 2011. "Energy and emissions forecast of China over a long-time horizon," Energy, Elsevier, vol. 36(1), pages 1-11.
    4. Wang, Tao & Watson, Jim, 2010. "Scenario analysis of China's emissions pathways in the 21st century for low carbon transition," Energy Policy, Elsevier, vol. 38(7), pages 3537-3546, July.
    5. Yu, Fanxian & Chen, Jining & Sun, Fu & Zeng, Siyu & Wang, Can, 2011. "Trend of technology innovation in China's coal-fired electricity industry under resource and environmental constraints," Energy Policy, Elsevier, vol. 39(3), pages 1586-1599, March.
    6. John Foster & Liam Wagner & Phil Wild & Junhua Zhao & Lucas Skoofa & Craig Froome, 2011. "Market and Economic Modelling of the Intelligent Grid: End of Year Report 2009," Energy Economics and Management Group Working Papers 09, School of Economics, University of Queensland, Australia.
    7. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    8. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    9. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    10. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    11. Xi Yang & Xiaoqian Xi & Shan Guo & Wanqi Lin & Xiangzhao Feng, 2018. "Carbon Mitigation Pathway Evaluation and Environmental Benefit Analysis of Mitigation Technologies in China’s Petrochemical and Chemical Industry," Energies, MDPI, vol. 11(12), pages 1-25, November.
    12. Xin Su & Frédéric Ghersi & Fei Teng & Gaëlle Le Treut & Meicong Liang, 2022. "The economic impact of a deep decarbonisation pathway for China: a hybrid model analysis through bottom-up and top-down linking," Post-Print hal-03897206, HAL.
    13. Xiangzhao FENG & Oleg LUGOVOY & Sheng YAN & Hu QIN, 2016. "Co-Benefits of CO2 and NOx Emission Control in China’s Cement Industry," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-20, December.
    14. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    15. Chia-Lin Chang & Michael McAleer, 2019. "Modeling Latent Carbon Emission Prices for Japan: Theory and Practice," Energies, MDPI, vol. 12(21), pages 1-21, November.
    16. Nagashima, Miyuki & Dellink, Rob & van Ierland, Ekko & Weikard, Hans-Peter, 2009. "Stability of international climate coalitions -- A comparison of transfer schemes," Ecological Economics, Elsevier, vol. 68(5), pages 1476-1487, March.
    17. Du, Huibin & Li, Qun & Liu, Xi & Peng, Binbin & Southworth, Frank, 2021. "Costs and potentials of reducing CO2 emissions in China's transport sector: Findings from an energy system analysis," Energy, Elsevier, vol. 234(C).
    18. Chia-Lin Chang & Te-Ke Mai & Michael Mcaleer, 2018. "Pricing Carbon Emissions In China," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 1-37, September.
    19. Ahn, Young-Hwan & Jeon, Wooyoung, 2019. "Power sector reform and CO2 abatement costs in Korea," Energy Policy, Elsevier, vol. 131(C), pages 202-214.
    20. Pascal da Costa & Wenhui Tian, 2015. "A Sectoral Prospective Analysis of CO2 Emissions in China, USA and France, 2010-2050," Working Papers hal-01026302, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:1:p:59-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.