IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v216y2021ics0360544220323276.html
   My bibliography  Save this article

Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: Evidence from augmented ARDL approach with a structural break

Author

Listed:
  • Pata, Ugur Korkut
  • Caglar, Abdullah Emre

Abstract

China is the most polluted country in the world, facing the challenges of increased CO2 emissions and its ecological footprint. In order for China to achieve sustainable growth, it must identify factors that reduce environmental pollution and take essential measures before it is too late. To this end, this study empirically examines the ecological outcomes of income, human capital, globalization, renewable energy consumption, and trade openness for China within the framework of the environmental Kuznets curve (EKC) hypothesis. The paper employs the recently developed augmented ARDL approach in the presence of one structural break to investigate annual time series data during the period 1980–2016. The findings reveal that the EKC hypothesis does not hold for China, and a U-shaped quadratic relationship between environmental pollution and income level has been determined for both CO2 emissions and ecological footprint. The results also suggest that globalization, trade openness, and income drive environmental pollution while increasing human capital reduces the ecological footprint in the long-term. No effects were found for renewable energy consumption. The study highlights that human capital plays a key role in reducing environmental degradation in China, while renewable energy is not sufficient to meet environmental requirements.

Suggested Citation

  • Pata, Ugur Korkut & Caglar, Abdullah Emre, 2021. "Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: Evidence from augmented ARDL approach with a structural break," Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220323276
    DOI: 10.1016/j.energy.2020.119220
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220323276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yulong & Wang, Zheng & Zhong, Zhangqi, 2019. "CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China," Renewable Energy, Elsevier, vol. 131(C), pages 208-216.
    2. Pao, Hsiao-Tien & Fu, Hsin-Chia & Tseng, Cheng-Lung, 2012. "Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model," Energy, Elsevier, vol. 40(1), pages 400-409.
    3. Costantini, Valeria & Monni, Salvatore, 2008. "Environment, human development and economic growth," Ecological Economics, Elsevier, vol. 64(4), pages 867-880, February.
    4. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    5. Shahbaz, Muhammad & Nasreen, Samia & Ahmed, Khalid & Hammoudeh, Shawkat, 2017. "Trade openness–carbon emissions nexus: The importance of turning points of trade openness for country panels," Energy Economics, Elsevier, vol. 61(C), pages 221-232.
    6. Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2015. "The Next Generation of the Penn World Table," American Economic Review, American Economic Association, vol. 105(10), pages 3150-3182, October.
    7. Roca, Jordi & Padilla, Emilio & Farre, Mariona & Galletto, Vittorio, 2001. "Economic growth and atmospheric pollution in Spain: discussing the environmental Kuznets curve hypothesis," Ecological Economics, Elsevier, vol. 39(1), pages 85-99, October.
    8. Salim, Ruhul A. & Shafiei, Sahar, 2014. "Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis," Economic Modelling, Elsevier, vol. 38(C), pages 581-591.
    9. Sam, Chung Yan & McNown, Robert & Goh, Soo Khoon, 2019. "An augmented autoregressive distributed lag bounds test for cointegration," Economic Modelling, Elsevier, vol. 80(C), pages 130-141.
    10. Nawaz, Kishwar & Lahiani, Amine & Roubaud, David, 2019. "Natural resources as blessings and finance-growth nexus: A bootstrap ARDL approach in an emerging economy," Resources Policy, Elsevier, vol. 60(C), pages 277-287.
    11. Schwert, G William, 2002. "Tests for Unit Roots: A Monte Carlo Investigation," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 5-17, January.
    12. Nazlioglu, Saban & Gormus, N. Alper & Soytas, Uğur, 2016. "Oil prices and real estate investment trusts (REITs): Gradual-shift causality and volatility transmission analysis," Energy Economics, Elsevier, vol. 60(C), pages 168-175.
    13. Bölük, Gülden & Mert, Mehmet, 2014. "Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries," Energy, Elsevier, vol. 74(C), pages 439-446.
    14. Shahbaz, Muhammad & Ozturk, Ilhan & Afza, Talat & Ali, Amjad, 2013. "Revisiting the environmental Kuznets curve in a global economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 494-502.
    15. Chen, Yulong & Zhao, Jincai & Lai, Zhizhu & Wang, Zheng & Xia, Haibin, 2019. "Exploring the effects of economic growth, and renewable and non-renewable energy consumption on China’s CO2 emissions: Evidence from a regional panel analysis," Renewable Energy, Elsevier, vol. 140(C), pages 341-353.
    16. Mishra, Vinod & Smyth, Russell, 2017. "Conditional convergence in Australia's energy consumption at the sector level," Energy Economics, Elsevier, vol. 62(C), pages 396-403.
    17. Ahmed, Zahoor & Asghar, Muhammad Mansoor & Malik, Muhammad Nasir & Nawaz, Kishwar, 2020. "Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China," Resources Policy, Elsevier, vol. 67(C).
    18. James E. Payne & Stephanie Miller & Junsoo Lee & Myeong Hyeon Cho, 2014. "Convergence of per capita sulphur dioxide emissions across US states," Applied Economics, Taylor & Francis Journals, vol. 46(11), pages 1202-1211, April.
    19. Zahoor Ahmed & Muhammad Mansoor Asghar & Muhammad Nasir Malik & Kishwar Nawaz, 2020. "Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China," Post-Print hal-03557938, HAL.
    20. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    21. Paresh Kumar Narayan, 2005. "The saving and investment nexus for China: evidence from cointegration tests," Applied Economics, Taylor & Francis Journals, vol. 37(17), pages 1979-1990.
    22. Sharif, Arshian & Iqbal Godil, Danish & Xu, Bingjie & Sinha, Avik & Abdul Rehman Khan, Syed & Jermsittiparsert, Kittisak, 2020. "Revisiting the Role of Tourism and Globalization in Environmental Degradation in China: Fresh Insights from the Quantile ARDL Approach," MPRA Paper 101156, University Library of Munich, Germany, revised 2020.
    23. Al-Mulali, Usama & Saboori, Behnaz & Ozturk, Ilhan, 2015. "Investigating the environmental Kuznets curve hypothesis in Vietnam," Energy Policy, Elsevier, vol. 76(C), pages 123-131.
    24. Wang, Yongpei & Yan, Weilong & Zhuang, Shangwen & Zhang, Qian, 2019. "Competition or complementarity ? The hydropower and thermal power nexus in China," Renewable Energy, Elsevier, vol. 138(C), pages 531-541.
    25. Richmond, Amy K. & Kaufmann, Robert K., 2006. "Is there a turning point in the relationship between income and energy use and/or carbon emissions?," Ecological Economics, Elsevier, vol. 56(2), pages 176-189, February.
    26. Zafar, Muhammad Wasif & Zaidi, Syed Anees Haider & Khan, Naveed R. & Mirza, Faisal Mehmood & Hou, Fujun & Kirmani, Syed Ali Ashiq, 2019. "The impact of natural resources, human capital, and foreign direct investment on the ecological footprint: The case of the United States," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    27. Ding, Tao & Ning, Yadong & Zhang, Yan, 2018. "The contribution of China’s bilateral trade to global carbon emissions in the context of globalization," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 78-88.
    28. Enders Walter & Jones Paul, 2016. "Grain prices, oil prices, and multiple smooth breaks in a VAR," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 399-419, September.
    29. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    30. Lin, Boqiang & Moubarak, Mohamed, 2014. "Renewable energy consumption – Economic growth nexus for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 111-117.
    31. Meng Ming & Lee Junsoo & Payne James E., 2017. "RALS-LM unit root test with trend breaks and non-normal errors: application to the Prebisch-Singer hypothesis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(1), pages 31-45, February.
    32. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    33. Kishwar Nawaz & Amine Lahiani & David Roubaud, 2019. "Natural resources as blessings and finance-growth nexus: A bootstrap ARDL approach in an emerging economy," Post-Print hal-03532512, HAL.
    34. Destek, Mehmet Akif & Ulucak, Recep & Dogan, Eyüp, 2018. "Analyzing the Environmental Kuznets Curve for the EU countries: The role of ecological footprint," MPRA Paper 106882, University Library of Munich, Germany.
    35. Muhammad Shahbaz & Saleheen Khan & Amjad Ali & Mita Bhattacharya, 2017. "The Impact Of Globalization On Co2 Emissions In China," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 62(04), pages 929-957, September.
    36. Chankrajang, Thanyaporn & Muttarak, Raya, 2017. "Green Returns to Education: Does Schooling Contribute to Pro-Environmental Behaviours? Evidence from Thailand," Ecological Economics, Elsevier, vol. 131(C), pages 434-448.
    37. Jalil, Abdul & Mahmud, Syed F., 2009. "Environment Kuznets curve for CO2 emissions: A cointegration analysis for China," Energy Policy, Elsevier, vol. 37(12), pages 5167-5172, December.
    38. Jing Lan & Makoto Kakinaka & Xianguo Huang, 2012. "Foreign Direct Investment, Human Capital and Environmental Pollution in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(2), pages 255-275, February.
    39. Robert McNown & Chung Yan Sam & Soo Khoon Goh, 2018. "Bootstrapping the autoregressive distributed lag test for cointegration," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1509-1521, March.
    40. Soo Khoon Goh & Joe Yee Yong & Cheng Chan Lau & Tuck Cheong Tang, 2017. "Bootstrap ARDL on energy-growth relationship for 22 OECD countries," Applied Economics Letters, Taylor & Francis Journals, vol. 24(20), pages 1464-1467, November.
    41. Gormus, Alper & Nazlioglu, Saban & Soytas, Ugur, 2018. "High-yield bond and energy markets," Energy Economics, Elsevier, vol. 69(C), pages 101-110.
    42. Pata, Ugur Korkut, 2018. "The influence of coal and noncarbohydrate energy consumption on CO2 emissions: Revisiting the environmental Kuznets curve hypothesis for Turkey," Energy, Elsevier, vol. 160(C), pages 1115-1123.
    43. Lv, Zhike & Xu, Ting, 2018. "Is economic globalization good or bad for the environmental quality? New evidence from dynamic heterogeneous panel models," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 340-343.
    44. Wang, S.S. & Zhou, D.Q. & Zhou, P. & Wang, Q.W., 2011. "CO2 emissions, energy consumption and economic growth in China: A panel data analysis," Energy Policy, Elsevier, vol. 39(9), pages 4870-4875, September.
    45. Payne, James E. & Vizek, Maruška & Lee, Junsoo, 2017. "Stochastic convergence in per capita fossil fuel consumption in U.S. states," Energy Economics, Elsevier, vol. 62(C), pages 382-395.
    46. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    47. Zhang, Yu & Zhang, Sufang, 2018. "The impacts of GDP, trade structure, exchange rate and FDI inflows on China's carbon emissions," Energy Policy, Elsevier, vol. 120(C), pages 347-353.
    48. Shafik, Nemat & Bandyopadhyay, Sushenjit, 1992. "Economic growth and environmental quality : time series and cross-country evidence," Policy Research Working Paper Series 904, The World Bank.
    49. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    50. Hongbo Liu & Hanho Kim & Shuanglu Liang & Oh-Sang Kwon, 2018. "Export Diversification and Ecological Footprint: A Comparative Study on EKC Theory among Korea, Japan, and China," Sustainability, MDPI, vol. 10(10), pages 1-12, October.
    51. Li, Tingting & Wang, Yong & Zhao, Dingtao, 2016. "Environmental Kuznets Curve in China: New evidence from dynamic panel analysis," Energy Policy, Elsevier, vol. 91(C), pages 138-147.
    52. Aslan Alper & Gozbasi Onur, 2016. "Environmental Kuznets curve hypothesis for sub-elements of the carbon emissions in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1327-1340, June.
    53. Hao, Yu & Liu, Yiming & Weng, Jia-Hsi & Gao, Yixuan, 2016. "Does the Environmental Kuznets Curve for coal consumption in China exist? New evidence from spatial econometric analysis," Energy, Elsevier, vol. 114(C), pages 1214-1223.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pata, Ugur Korkut, 2018. "The influence of coal and noncarbohydrate energy consumption on CO2 emissions: Revisiting the environmental Kuznets curve hypothesis for Turkey," Energy, Elsevier, vol. 160(C), pages 1115-1123.
    2. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    3. Ertugrul, Hasan Murat & Çetin, Murat & Şeker, Fahri & Dogan, Eyüp, 2015. "The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries," MPRA Paper 97539, University Library of Munich, Germany, revised 10 Mar 2016.
    4. Pata, Ugur Korkut & Ertugrul, Hasan Murat, 2023. "Do the Kyoto Protocol, geopolitical risks, human capital and natural resources affect the sustainability limit? A new environmental approach based on the LCC hypothesis," Resources Policy, Elsevier, vol. 81(C).
    5. Pata, Ugur Korkut & Isik, Cem, 2021. "Determinants of the load capacity factor in China: A novel dynamic ARDL approach for ecological footprint accounting," Resources Policy, Elsevier, vol. 74(C).
    6. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    7. Ugur Korkut Pata, 2021. "Do renewable energy and health expenditures improve load capacity factor in the USA and Japan? A new approach to environmental issues," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(9), pages 1427-1439, December.
    8. Ali, Adnan & Ramakrishnan, Suresh & Faisal,, 2022. "Financial development and natural resources. Is there a stock market resource curse?," Resources Policy, Elsevier, vol. 75(C).
    9. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    10. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2021. "Analysing the relationship between CO2 emissions and GDP in China: a fractional integration and cointegration approach," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-16, December.
    11. Karaaslan, Abdulkerim & Çamkaya, Serhat, 2022. "The relationship between CO2 emissions, economic growth, health expenditure, and renewable and non-renewable energy consumption: Empirical evidence from Turkey," Renewable Energy, Elsevier, vol. 190(C), pages 457-466.
    12. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    13. Soumen Rej & Barnali Nag & Md. Emran Hossain, 2022. "Can Renewable Energy and Export Help in Reducing Ecological Footprint of India? Empirical Evidence from Augmented ARDL Co-Integration and Dynamic ARDL Simulations," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    14. Ahmad, Ashfaq & Zhao, Yuhuan & Shahbaz, Muhammad & Bano, Sadia & Zhang, Zhonghua & Wang, Song & Liu, Ya, 2016. "Carbon emissions, energy consumption and economic growth: An aggregate and disaggregate analysis of the Indian economy," Energy Policy, Elsevier, vol. 96(C), pages 131-143.
    15. Syed Tauseef Hassan & Enjun Xia & Chien-Chiang Lee, 2021. "Mitigation pathways impact of climate change and improving sustainable development: The roles of natural resources, income, and CO2 emission," Energy & Environment, , vol. 32(2), pages 338-363, March.
    16. Adebola Solarin, Sakiru & Al-Mulali, Usama & Ozturk, Ilhan, 2017. "Validating the environmental Kuznets curve hypothesis in India and China: The role of hydroelectricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1578-1587.
    17. Ahmed, Zahoor & Asghar, Muhammad Mansoor & Malik, Muhammad Nasir & Nawaz, Kishwar, 2020. "Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China," Resources Policy, Elsevier, vol. 67(C).
    18. Azad Haider & Muhammad Iftikhar ul Husnain & Wimal Rankaduwa & Farzana Shaheen, 2021. "Nexus between Nitrous Oxide Emissions and Agricultural Land Use in Agrarian Economy: An ARDL Bounds Testing Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    19. Le Hoang Phong & Dang Thi Bach Van & Ho Hoang Gia Bao, 2018. "The Role of Globalization on CO2 Emission in Vietnam Incorporating Industrialization, Urbanization, GDP per Capita and Energy Use," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 275-283.
    20. Anh-Tu Nguyen & Shih-Hao Lu & Phuc Thanh Thien Nguyen, 2021. "Validating and Forecasting Carbon Emissions in the Framework of the Environmental Kuznets Curve: The Case of Vietnam," Energies, MDPI, vol. 14(11), pages 1-38, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220323276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.