Energy efficiency improvements in ammonia production—perspectives and uncertainties
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2004.12.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Worrell, E. & Blok, K., 1994. "Energy savings in the nitrogen fertilizer industry in the Netherlands," Energy, Elsevier, vol. 19(2), pages 195-209.
- Worrell, E. & Cuelenaere, R.F.A. & Blok, K. & Turkenburg, W.C., 1994. "Energy consumption by industrial processes in the European Union," Energy, Elsevier, vol. 19(11), pages 1113-1129.
- Phylipsen, Dian & Blok, Kornelis & Worrell, Ernst & Beer, Jeroen de, 2002. "Benchmarking the energy efficiency of Dutch industry: an assessment of the expected effect on energy consumption and CO2 emissions," Energy Policy, Elsevier, vol. 30(8), pages 663-679, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2017. "Exergy assessment of single and dual pressure industrial ammonia synthesis units," Energy, Elsevier, vol. 141(C), pages 2540-2558.
- Kirova-Yordanova, Zornitza, 2017. "Exergy-based estimation and comparison of urea and ammonium nitrate production efficiency and environmental impact," Energy, Elsevier, vol. 140(P1), pages 158-169.
- Fang, Jing & Xiong, Chuhao & Feng, Mingqian & Wu, Ye & Liu, Dong, 2022. "Utilization of carbon-based energy as raw material instead of fuel with low CO2 emissions: Energy analyses and process integration of chemical looping ammonia generation," Applied Energy, Elsevier, vol. 312(C).
- Tian, Jinping & Shi, Han & Li, Xing & Chen, Lujun, 2012. "Measures and potentials of energy-saving in a Chinese fine chemical industrial park," Energy, Elsevier, vol. 46(1), pages 459-470.
- Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2017. "Modeling and optimization of an industrial ammonia synthesis unit: An exergy approach," Energy, Elsevier, vol. 137(C), pages 234-250.
- Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
- Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Talaei, Alireza & Ahiduzzaman, Md. & Kumar, Amit, 2018. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation potentials in the chemical sector," Energy, Elsevier, vol. 153(C), pages 231-247.
- Liu, Xiaoyu & Chen, Dingjiang & Zhang, Wenjun & Qin, Weizhong & Zhou, Wenji & Qiu, Tong & Zhu, Bing, 2013. "An assessment of the energy-saving potential in China's petroleum refining industry from a technical perspective," Energy, Elsevier, vol. 59(C), pages 38-49.
- Wang, Xiaoyu & Su, Mingze & Zhao, Haibo, 2021. "Process design and exergy cost analysis of a chemical looping ammonia generation system using AlN/Al2O3 as a nitrogen carrier," Energy, Elsevier, vol. 230(C).
- McKenna, R.C. & Norman, J.B., 2010. "Spatial modelling of industrial heat loads and recovery potentials in the UK," Energy Policy, Elsevier, vol. 38(10), pages 5878-5891, October.
- Hayashi, Daisuke & Krey, Matthias, 2007. "Assessment of clean development mechanism potential of large-scale energy efficiency measures in heavy industries," Energy, Elsevier, vol. 32(10), pages 1917-1931.
- Nordborg, Maria & Berndes, Göran & Dimitriou, Ioannis & Henriksson, Annika & Mola-Yudego, Blas & Rosenqvist, Håkan, 2018. "Energy analysis of willow production for bioenergy in Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 473-482.
- Andrea Ramírez & Martin K. Patel & Kornelis Blok, 2011. "Using Physical Indicators to Monitor Energy Efficiency in Energy-Extensive Sectors," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 4, Edward Elgar Publishing.
- Bühler, Fabian & Guminski, Andrej & Gruber, Anna & Nguyen, Tuong-Van & von Roon, Serafin & Elmegaard, Brian, 2018. "Evaluation of energy saving potentials, costs and uncertainties in the chemical industry in Germany," Applied Energy, Elsevier, vol. 228(C), pages 2037-2049.
- Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2016. "On the efficiency, exergy costs and CO2 emission cost allocation for an integrated syngas and ammonia production plant," Energy, Elsevier, vol. 117(P2), pages 341-360.
- Bertilsson, Göte O.B. & Kirchmann, Holger, 2021. "Sustainable N fertilizer production based on a loop: Straw - biogas – ‘Haber-Bosch’ process," Agricultural Systems, Elsevier, vol. 190(C).
- Rao, Xufeng & Liu, Minmin & Chien, Meifang & Inoue, Chihiro & Zhang, Jiujun & Liu, Yuyu, 2022. "Recent progress in noble metal electrocatalysts for nitrogen-to-ammonia conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Brandenburg, Marcus, 2017. "A hybrid approach to configure eco-efficient supply chains under consideration of performance and risk aspects," Omega, Elsevier, vol. 70(C), pages 58-76.
- Penkuhn, Mathias & Tsatsaronis, George, 2017. "Comparison of different ammonia synthesis loop configurations with the aid of advanced exergy analysis," Energy, Elsevier, vol. 137(C), pages 854-864.
- Sarkar, Susanjib & Kumar, Amit & Sultana, Arifa, 2011. "Biofuels and biochemicals production from forest biomass in Western Canada," Energy, Elsevier, vol. 36(10), pages 6251-6262.
- Zhou, Wenji & Zhu, Bing & Li, Qiang & Ma, Tieju & Hu, Shanying & Griffy-Brown, Charla, 2010. "CO2 emissions and mitigation potential in China's ammonia industry," Energy Policy, Elsevier, vol. 38(7), pages 3701-3709, July.
- Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Saygin, D. & Worrell, E. & Patel, M.K. & Gielen, D.J., 2011. "Benchmarking the energy use of energy-intensive industries in industrialized and in developing countries," Energy, Elsevier, vol. 36(11), pages 6661-6673.
- Phylipsen, G. J. M. & Blok, K. & Worrell, E., 1997. "International comparisons of energy efficiency-Methodologies for the manufacturing industry," Energy Policy, Elsevier, vol. 25(7-9), pages 715-725.
- Akvile Lawrence & Patrik Thollander & Mariana Andrei & Magnus Karlsson, 2019. "Specific Energy Consumption/Use (SEC) in Energy Management for Improving Energy Efficiency in Industry: Meaning, Usage and Differences," Energies, MDPI, vol. 12(2), pages 1-22, January.
- Phylipsen, Dian & Blok, Kornelis & Worrell, Ernst & Beer, Jeroen de, 2002. "Benchmarking the energy efficiency of Dutch industry: an assessment of the expected effect on energy consumption and CO2 emissions," Energy Policy, Elsevier, vol. 30(8), pages 663-679, June.
- Kong, Lingbo & Price, Lynn & Hasanbeigi, Ali & Liu, Huanbin & Li, Jigeng, 2013. "Potential for reducing paper mill energy use and carbon dioxide emissions through plant-wide energy audits: A case study in China," Applied Energy, Elsevier, vol. 102(C), pages 1334-1342.
- Ke, Jing & Price, Lynn & McNeil, Michael & Khanna, Nina Zheng & Zhou, Nan, 2013. "Analysis and practices of energy benchmarking for industry from the perspective of systems engineering," Energy, Elsevier, vol. 54(C), pages 32-44.
- Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
- Ronnie Figueiredo & Mohammad Soliman & Alamir N. Al-Alawi & Maria José Sousa, 2022. "The Impacts of Geopolitical Risks on the Energy Sector: Micro-Level Operative Analysis in the European Union," Economies, MDPI, vol. 10(12), pages 1-12, November.
- Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2016. "On the efficiency, exergy costs and CO2 emission cost allocation for an integrated syngas and ammonia production plant," Energy, Elsevier, vol. 117(P2), pages 341-360.
- Murtishaw, Scott & Schipper, Lee & Unander, Fridtjof & Karbuz, Sohbet & Khrushch, Marta, 2001. "Lost carbon emissions: the role of non-manufacturing "other industries" and refining in industrial energy use and carbon emissions in IEA countries," Energy Policy, Elsevier, vol. 29(2), pages 83-102, January.
- Groenenberg, Heleen & Phylipsen, Dian & Blok, Kornelis, 2001. "Differentiating commitments world wide: global differentiation of GHG emissions reductions based on the Triptych approach--a preliminary assessment," Energy Policy, Elsevier, vol. 29(12), pages 1007-1030, October.
- Groenenberg, Heleen & Blok, Kornelis & van der Sluijs, Jeroen, 2005. "Projection of energy-intensive material production for bottom-up scenario building," Ecological Economics, Elsevier, vol. 53(1), pages 75-99, April.
- Ramírez, C.A. & Patel, M. & Blok, K., 2005. "The non-energy intensive manufacturing sector," Energy, Elsevier, vol. 30(5), pages 749-767.
- Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2017. "Modeling and optimization of an industrial ammonia synthesis unit: An exergy approach," Energy, Elsevier, vol. 137(C), pages 234-250.
- Changsheng Li & Lei Zhu & Tobias Fleiter, 2014. "Energy Efficiency Potentials in the Chlor-Alkali Sector — A Case Study of Shandong Province in China," Energy & Environment, , vol. 25(3-4), pages 661-686, April.
- Broeren, M.L.M. & Saygin, D. & Patel, M.K., 2014. "Forecasting global developments in the basic chemical industry for environmental policy analysis," Energy Policy, Elsevier, vol. 64(C), pages 273-287.
- Worrell, Ernst & Price, Lynn & Martin, Nathan & Farla, Jacco & Schaeffer, Roberto, 1997. "Energy intensity in the iron and steel industry: a comparison of physical and economic indicators," Energy Policy, Elsevier, vol. 25(7-9), pages 727-744.
- Beisheim, Benedikt & Rahimi-Adli, Keivan & Krämer, Stefan & Engell, Sebastian, 2019. "Energy performance analysis of continuous processes using surrogate models," Energy, Elsevier, vol. 183(C), pages 776-787.
- Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
- Phylipsen, G J M & Bode, J W & Blok, K & Merkus, H & Metz, B, 1998. "A Triptych sectoral approach to burden differentiation; GHG emissions in the European bubble," Energy Policy, Elsevier, vol. 26(12), pages 929-943, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:30:y:2005:i:13:p:2487-2504. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.