IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v19y1994i2p195-209.html
   My bibliography  Save this article

Energy savings in the nitrogen fertilizer industry in the Netherlands

Author

Listed:
  • Worrell, E.
  • Blok, K.

Abstract

We study the specific energy consumption for the production of nitrogen fertilizers and the various options that are available to reduce this consumption. The average energy consumption for ammonia production (by means of steam reforming of natural gas) in 1988 was 33.5 GJ/ton (LHV). The technical energy savings potential for the year 2000 is 16% [the specific energy consumption thus falls to 28.0 GJ/ton (LHV)]. The profitable energy savings potential is a potential saving of 6% with a payback period of less than three years. The thermodynamic minimum energy consumption using the steam reforming route is 19.1 GJ/ton (LHV). We calculate the effect that savings in ammonia production will have on the energy required for the production of several types of N-fertilizers (urea, nitric acid, ammonium nitrate, and CAN).

Suggested Citation

  • Worrell, E. & Blok, K., 1994. "Energy savings in the nitrogen fertilizer industry in the Netherlands," Energy, Elsevier, vol. 19(2), pages 195-209.
  • Handle: RePEc:eee:energy:v:19:y:1994:i:2:p:195-209
    DOI: 10.1016/0360-5442(94)90060-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0360544294900604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(94)90060-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheldon, Seth & Hadian, Saeed & Zik, Ory, 2015. "Beyond carbon: Quantifying environmental externalities as energy for hydroelectric and nuclear power," Energy, Elsevier, vol. 84(C), pages 36-44.
    2. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2017. "Modeling and optimization of an industrial ammonia synthesis unit: An exergy approach," Energy, Elsevier, vol. 137(C), pages 234-250.
    3. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2016. "On the efficiency, exergy costs and CO2 emission cost allocation for an integrated syngas and ammonia production plant," Energy, Elsevier, vol. 117(P2), pages 341-360.
    4. Ramírez, C.A. & Worrell, E., 2006. "Feeding fossil fuels to the soil," Resources, Conservation & Recycling, Elsevier, vol. 46(1), pages 75-93.
    5. Farla, Jacco & Cuelenaere11, Rob & Blok, Kornelis, 1998. "Energy efficiency and structural change in the Netherlands, 1980-1990," Energy Economics, Elsevier, vol. 20(1), pages 1-28, February.
    6. Phylipsen, G. J. M. & Blok, K. & Worrell, E., 1997. "International comparisons of energy efficiency-Methodologies for the manufacturing industry," Energy Policy, Elsevier, vol. 25(7-9), pages 715-725.
    7. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2017. "Exergy assessment of single and dual pressure industrial ammonia synthesis units," Energy, Elsevier, vol. 141(C), pages 2540-2558.
    8. Rafiqul, Islam & Weber, Christoph & Lehmann, Bianca & Voss, Alfred, 2005. "Energy efficiency improvements in ammonia production—perspectives and uncertainties," Energy, Elsevier, vol. 30(13), pages 2487-2504.
    9. Farla, Jacco C.M & Blok, Kornelis, 2000. "The use of physical indicators for the monitoring of energy intensity developments in the Netherlands, 1980–1995," Energy, Elsevier, vol. 25(7), pages 609-638.
    10. Phylipsen, Dian & Blok, Kornelis & Worrell, Ernst & Beer, Jeroen de, 2002. "Benchmarking the energy efficiency of Dutch industry: an assessment of the expected effect on energy consumption and CO2 emissions," Energy Policy, Elsevier, vol. 30(8), pages 663-679, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:19:y:1994:i:2:p:195-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.